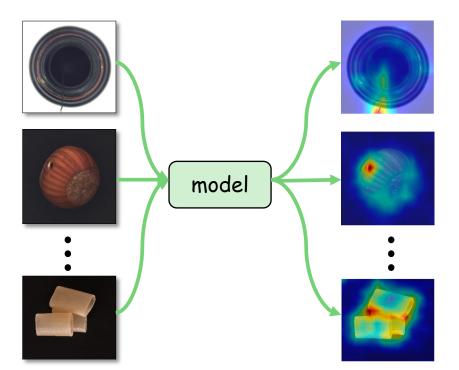


Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt

Bin-Bin Gao

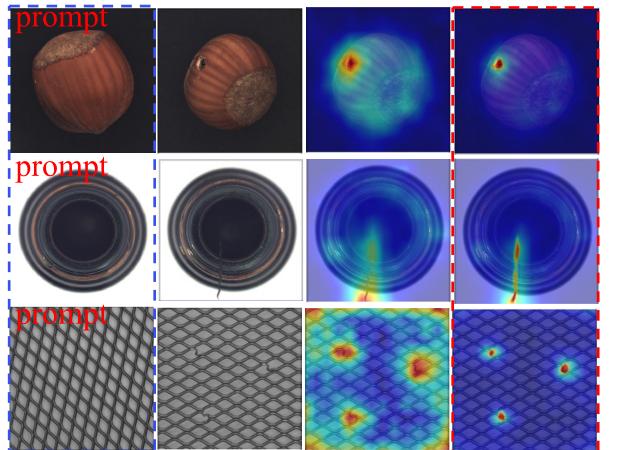
Tencent YouTu Lab

OCt. 01 — Oct. 4, 2024, Milan

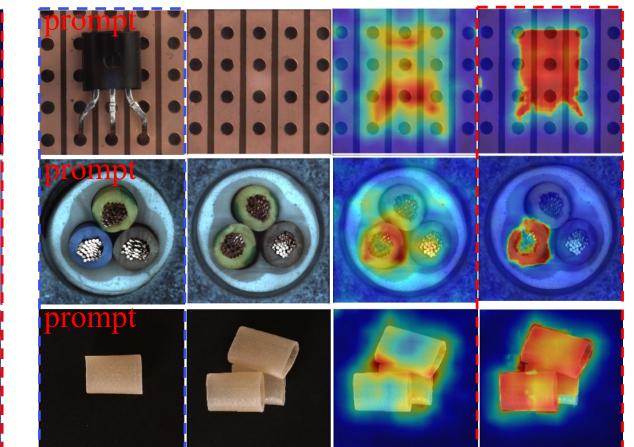

Introduction

Sepereated and Unified Anomlay Detection

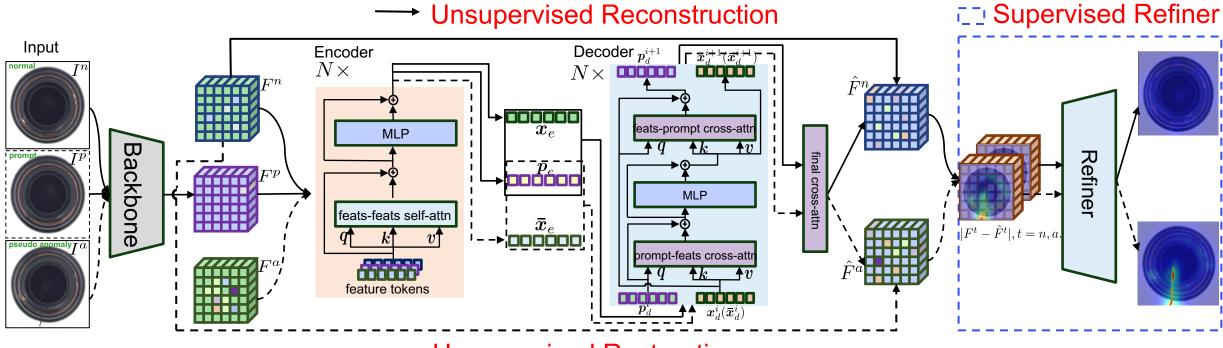
The unified anomaly detection attempts to detect multi-class anomalies using a single model. Compared to the separated mode, the unified AD is more challenging as it requires handling more complex data distributions.


Separated Paradigm one model for one class

Unified Paradigm one model for all classes

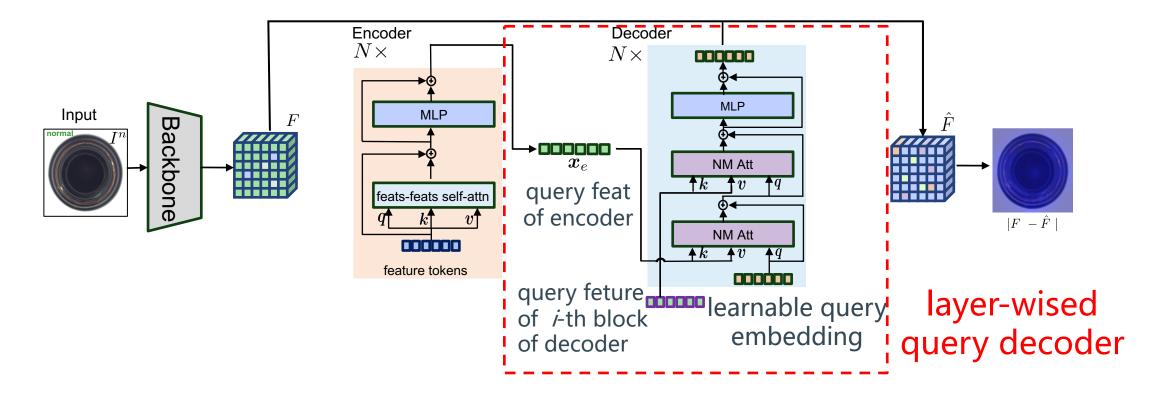

Introduction

✓ The common anomalies can be detected using their own contextual information.


✓ The camouflaged anomalies are hard to detect using only query images.

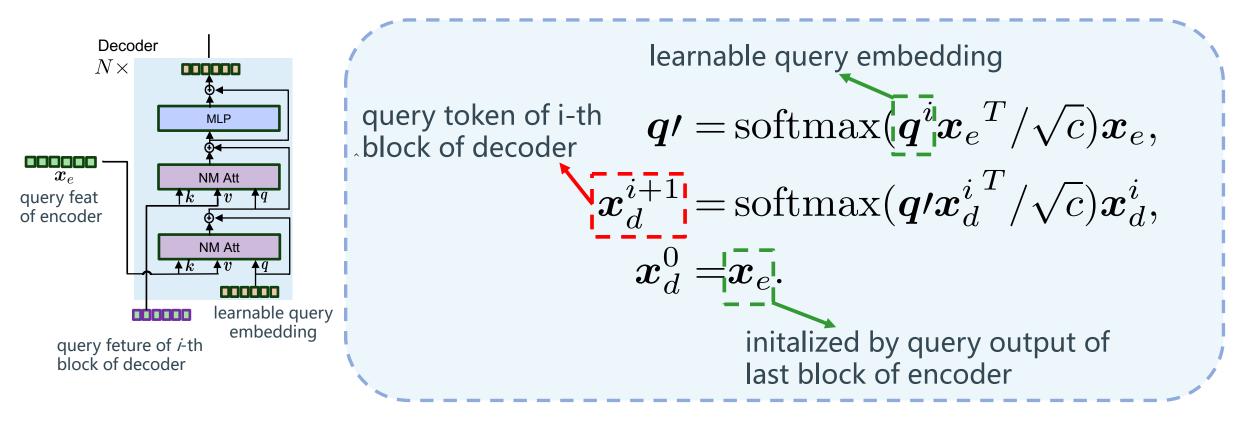
How to effectively utilize the normal image prompts to improve unified anomaly detection?

OneNIP



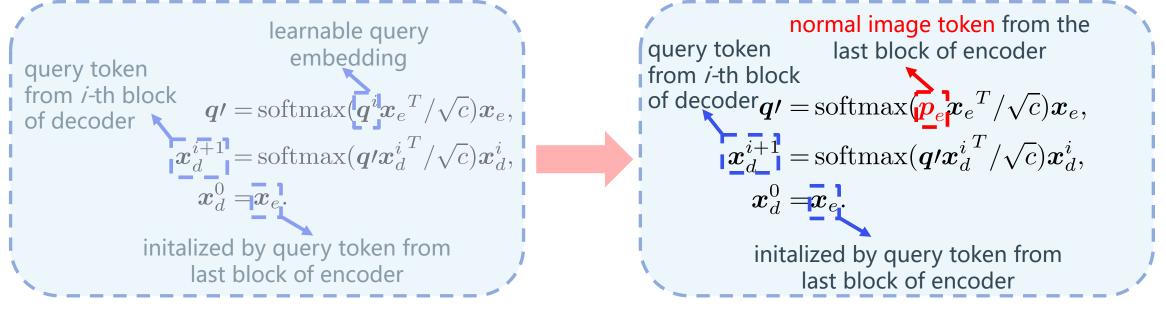
---> Unsupervised Restoration

OneNIP is built on the state-of-the-art UniAD, which mainly consists of unsupervised reconstruction, unsupervised restoration, and supervised refiner.


Revisiting UniAD.

UniAD is the first work to study the unified anomaly detection using a transformer reconstruction network. The layer-wised query decoder is one of core components.

Revisiting UniAD: Layer-wised Decoder in UniAD



Eq.1 Layer-wise query decoder

How to utilize normal image prompt? unidirectional decoder

A simple and naive manner is to directly replace the learnable query embedding in the LQD with the normal image prompt token from the encoder, thereby enabling the interaction between the prompt and query.

Eq.1 layer-wise query decoder

Eq.2 unidirectional decoder with static prompt

Issue: The static prompt may not be flexible enough and may fail to align with the query token especially when the query token is continuously updated in the decoder.

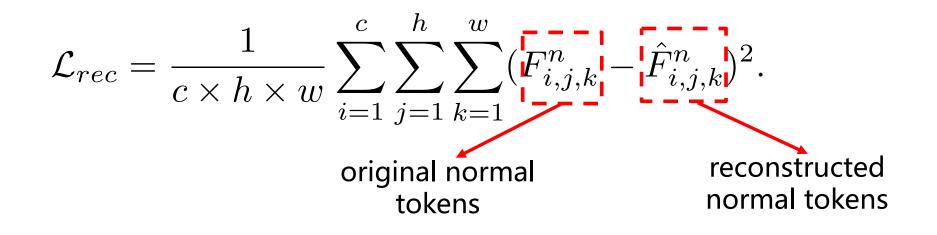
How to update normal image prompt and query token dynamically ? bidirectional decoder

 $oldsymbol{x}_{d}^{i+1} = \operatorname{softmax}(oldsymbol{q}' oldsymbol{x}_{d}^{i\,T} / \sqrt{c}) oldsymbol{x}_{d}^{i},$ $oldsymbol{x}_{d}^{0} = oldsymbol{x}_{e}.$ Eq.1 layer-wise query decoder

 $\boldsymbol{q}' = \operatorname{softmax}(\boldsymbol{q}^{i} \boldsymbol{x}_{e}^{T} / \sqrt{c}) \boldsymbol{x}_{e},$

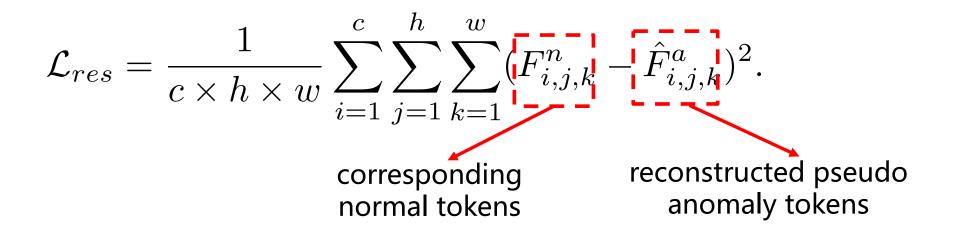
normal image token from the last block of encoder $q' = \operatorname{softmax}(p_e x_e^T / \sqrt{c}) x_e,$ $x_d^{i+1} = \operatorname{softmax}(q' x_d^{i^T} / \sqrt{c}) x_d^i,$ $x_d^0 = x_e.$ Eq.2 unidirectional decoder with static prompt $\begin{array}{l} \text{prompt-to-} \\ \text{feature} \\ \text{feature} \\ \text{feature-to-} \\ \boldsymbol{x}_{d}^{i+1} = \operatorname{softmax}(\boldsymbol{p}_{d}^{i}\boldsymbol{x}_{d}^{i\,T}/\sqrt{c})\boldsymbol{x}_{d}^{i}, \\ \text{feature-to-} \\ \boldsymbol{x}_{d}^{i+1} = \operatorname{softmax}(\boldsymbol{x}_{d}^{i}\boldsymbol{p}_{d}^{i+1\,T}/\sqrt{c})\boldsymbol{p}_{d}^{i+1}, \\ p_{d}^{0} = \boldsymbol{p}_{e}, \boldsymbol{x}_{d}^{0} = \boldsymbol{x}_{e}. \end{array}$

initalized by normal image and query tokens from last block of encoder


Eq.3 bidirectional decoder with dynamic prompt

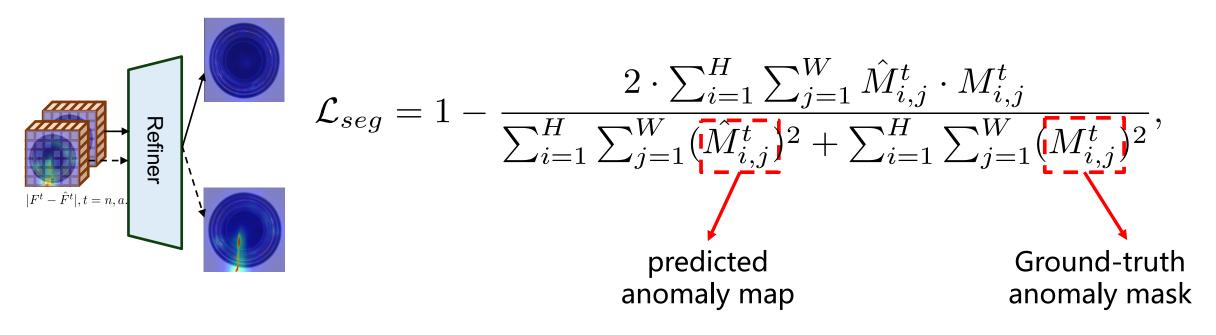
In this way, the query token reconstruction not only utilizes its contextual information but also leverages the corresponding normal prompt dynamically.

Unsupervised Reconstruction Loss


For unsupervised reconstruction, we minimize MSE loss between the reconstructed normal tokens and original normal tokens, that is

Unsupervised Restoration Loss

For unsupervised restoration, we minimize MSE loss between the restored pseudo anomaly tokens and the corresponding normal tokens.


Here, we generate pseudo anomaly images using CutPaste and DRAEM. (adding corruptions or disruptions to a normal training images)

Supervised Refiner

We design a lightweight and pixel-level refiner based on reconstruction errors on normal and pseudo anomaly tokens for achieving more anomaly segmentation

Supervised Refiner

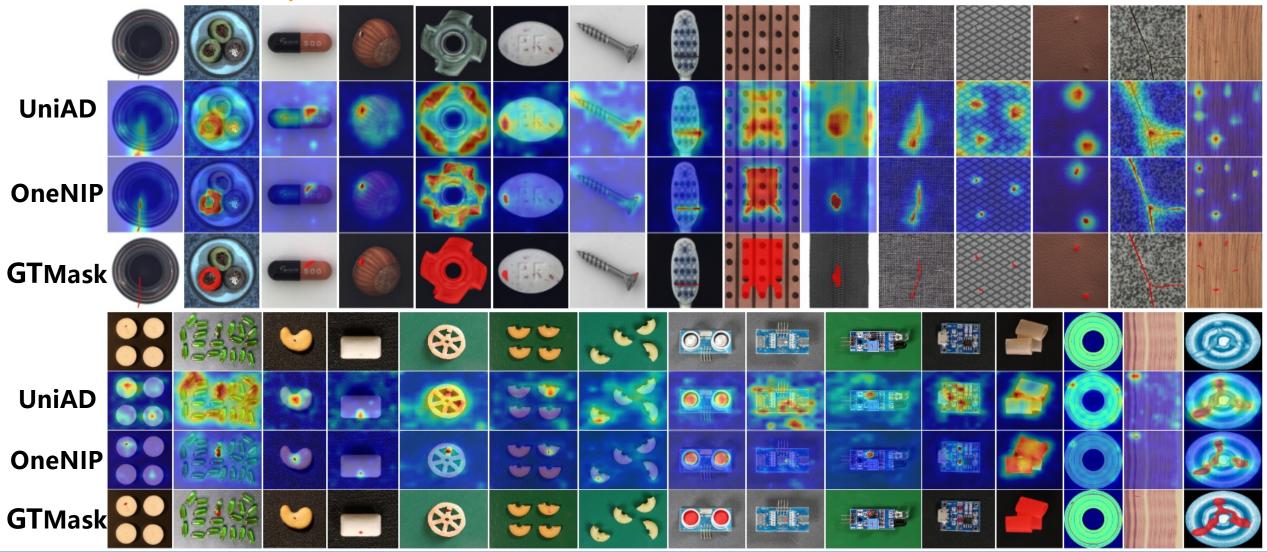
Experiments

Comparisons with State-of-the-Arts

	$\mathbf{Metric}\uparrow$		En	nbedding-ba	ased	Discriminator-based Reconstruction-based				
Datasets		CS-Flow [38]	PaDiM [10]	DFM [1]	PatchCore [37]	CFA [20]	DRAEM [54]	SimpleNet [25]	UniAD [52]	OneNIP
MVTec [4]	I-ROC/PR P-ROC/PR	$\left \begin{array}{c} 81.4 \ / \ 90.2 \\ 93.8 \ / \ 33.8 \end{array}\right $	$87.5 \ / \ 92.8 \\ 95.5 \ / \ 37.8$	$\begin{array}{c} 69.7 \ / \ 89.8 \\ 96.5 \ / \ 42.4 \end{array}$	$89.8 \ / \ 96.3 \\ 96.4 \ / \ 50.1$	$\begin{array}{c} 80.4 \ / \ 91.0 \\ 90.7 \ / \ 37.1 \end{array}$	$\left \begin{array}{c}91.4 \ / \ 95.3 \\85.2 \ / \ 49.6\end{array}\right $	$78.2 \ / \ 90.0 \\ 81.0 \ / \ 24.8$	$\begin{array}{c} 96.5 \ / \ 98.9 \\ 96.8 \ / \ 44.7 \end{array}$	97.9 / 99.3 97.9 / 63.7
BTAD [26]	I-ROC/PR P-ROC/PR	$\left \begin{array}{c}91.8 \ / \ 96.3 \\95.9 \ / \ 34.6\end{array}\right $	$\frac{95.7}{96.7} / \ 97.4 \\ 96.7 / \ 48.7$	$\begin{array}{c} 68.8 \ / \ 82.8 \\ 96.3 \ / \ 48.0 \end{array}$	$89.2 \ / \ 96.4 \\ 96.3 \ / \ 48.4$	$\begin{array}{c} 87.5 \ / \ 87.7 \\ 95.6 \ / \ 40.4 \end{array}$	$\left \begin{array}{c} 84.7 \ / \ 95.0 \\ 74.2 \ / \ 12.3 \end{array}\right $	$\begin{array}{c} 90.3 \ / \ 95.0 \\ 78.8 \ / \ 36.2 \end{array}$	92.2 / 97.9 97.1 / 50.9	92.6 / 98.5 97.4 / 56.8
VisA [60]	I-ROC/PR P-ROC/PR	$\left \begin{array}{c}75.8 / 80.0\\95.6 / 18.6\end{array}\right $	$\begin{array}{c} 78.1 \ / \ 78.3 \\ 95.9 \ / \ 17.1 \end{array}$	$\begin{array}{c} 51.6 \ / \ 77.8 \\ 96.5 \ / \ 25.2 \end{array}$	$\begin{array}{c} 90.3 \ / \ 92.0 \\ 96.8 \ / \ 38.2 \end{array}$	$\begin{array}{c} 69.0 \ / \ 73.8 \\ 91.4 \ / \ 16.8 \end{array}$	$\left \begin{array}{c} 81.8 \ / \ 85.8 \\ 78.1 \ / \ 15.1 \end{array}\right $	$89.2 \ / \ 92.2 \\ 95.3 \ / \ 33.1$	90.8 / 93.0 98.4 / 33.6	92.5 / 94.5 98.7 / 43.3

Results on Complex Distribution

Datasets	#Classes		UniAD 52	
MVTec [4]	15	I-ROC/PR P-ROC/PR		
BTAD [26]	3	I-ROC/PR P-ROC/PR	$\left \begin{array}{c}92.0/97.1\\97.1/48.0\end{array}\right $	92.0/97.5 97.9/59.0
VisA [60]	12	I-ROC/PR P-ROC/PR	$\left \begin{array}{c} 89.9/92.4\\ 98.3/33.2\end{array}\right $	91.9/93.9 98.6/40.6
All	30	I-ROC/PR P-ROC/PR	$\begin{array}{ }92.6/95.7\\97.1/39.1\end{array}$	94.5/96.8 98.0/52.4


Results with Different Resolution

Datasets	Metric ↑	224×224	$256{ imes}256$	320×320
MVTec [4]	I-ROC/PR	97.9/99.3	97.6/99.2	97.9/99.3
	P-ROC/PR	97.9/63.7	97.8/64.7	97.9/65.9
BTAD 26	I-ROC/PR	92.6/98.5	94.9/99.0	95.3/98.9
	P-ROC/PR	97.4/56.8	97.6/57.0	97.8/57.6
VisA [60]	I-ROC/PR	92.5/94.5	93.3/94.3	94.2/95.7
	P-ROC/PR	98.7/43.3	98.8/44.1	98.8/46.1

Experiments

Qualitative Comparisons with State-of-the-Arts

Experiments

Ablation Studies

 Table 4: Ablation studies on MVTec. Default settings are marked in blue.

(a) Prompt strategy in Reconstruction, Restoration, and Refiner										(b) Effects of the number of Encoder, and Decoder					
No. Prompt Res.Ref. I-ROCP-ROCI-PRP-PR								,	Enc Dec I-ROCP-ROCI-PRP-PR						
0	×	X	X	96.5	9	6.8	98.9	44.7	-	1	1	94.8	97.0	97.9	56.0
1	static	X	X	96.8	9'	7.0	98.9	45.8		2	2	96.7	97.4	98.9	59.4
2	dynamic	X	X	97.5	9'	7.1	99.2	46.0		4	4	97.9	97.9	99.3	63.7
3	×	\checkmark	X	96.7	9'	7.0	98.9	46.5		6	6	98.1	98.0	99.4	64.6
4	dynamic	\checkmark	X	97.4	9'	7.3	99.1	48.4		2	4	97.0	97.6	99.0	61.2
5	dynamic	 Image: A second s	✓	97.9	9'	7.9	99.3	63.7		4	2	97.1	97.6	99.0	62.1
	(c) Effects of weight α (d) Different prompt modes of the same category														
α	α I-ROCP-ROCI-PRP-PR Train Test I-RO							OC	F	P-RC	DC I-	PR	P-P	R	
0.0	0 97.6	97.3	99	0.2 48.	3		, rai	nd 97.8	$85\pm$	0.019	7.86	5 ± 0.0099	$9.27{\pm}0.0$	0163.7	$'1{\pm}0.01$
0.2	5 97.8	97.7	99	.3 59.	3	rar	าด					5 ± 0.0099			
0.5	97.9	97.9	99	.3 63.	7	<u> </u>	, fix	ed 97.9	91	9	7.86	99	9.30	63.6	6
1.0	0 96.7	96.7	98	6.9 63.	7	fixe	ed rai	nd 96.0	$05\pm$	0.249	7.49	0 ± 0.0398	$8.34{\pm}0.$	1960.6	5 ± 0.18

□ We propose a simple yet effective anomaly detection framework that learns to detect multi-class anomalies with one normal image prompt.

We propose a bidirectional decoder to dynamically update the prompt and query tokens and promote their interaction.

□ To enhance the prompt guidance, we introduce pseudo anomaly images and propose an unsupervised restoration stream.

We propose a lightweight and pixel-level refiner, which greatly boosts anomaly segmentation performance.

Thanks!

