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4.1 Comparisons with the state-of-the-arts

Table 1: Quantitative comparisons on MVTec, VisA and Goods. Red indicates the best performance, while
blue denotes the second-best result. Gray indicates the model is trained by full-shot normal images.

Zero-/few-shot anomaly segmentation aims to identify any novel anomalies
within zero or only a few normal images. Most methods relies on powerful
vision-language models using manually designed textual prompts.

3.1 Rethinking Anomaly Segmentation

Table 2: The complexity and efficiency comparisons.

We rethink anomaly segmentation and find it can be unified into change segmentation.
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there is room using visual-language models and worthwhile further to pursue. small scale, insufficient diversity and various noises.

4.2 Ablation study

Table 3: Ablation studies on MVTec. Default settings are marked in blue.
(a) Effect of feature alignment module. (b) Learn or freeze encoder?

No.|Align Fusion [I-ROCI-PR P-ROC P-PR P-PRO  No. |Backbone Learn?|I-ROC I-PR P-ROC P-PR P-PRO

However, the novel paradigm shift enables us to leverage large-scale synthetic image
pairs with object-level and local region changes, thereby overcoming the long-standing
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its expectations (or predictions) with the actual inputs from the visual
cortex.

3.2 One-Prompt Meta-Learning for Universal Anomaly Segmentation

(c) Effects of change types and decoder module. (d) Effects of the number of training samples.
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Decoder: U-Net is better than FPN in pixel-level change segmentation.
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Some existing methods (i.e., PatchCore) perceive anomalies and they are ¢ Learnable

indeed similar to the brains. However, they usually require a certain
number of normal images and thus are limited in universal (i.e., open-
world) scenarios.

ChangeTypes:The diversity of synthetic data is critical for good generalization.

Training Scale: MetaUAS still works when the number of training images is
small scale (e.g., 50%), and the performance can further improve when
increasing the number of training samples.

The proposed MetaUAS consists of an encoder, a feature alignment module (FAM), and a
decoder. It is trained on a synthesized dataset in a one-prompt meta-learning manner for
change segmentation tasks. Once trained, it can segment any anomalies providing only

W n build similar con in AS. Fir iven one normal im .
e can build similar concepts S st, given one norma age one normal image prompt.

prompt for each class, we take it as the expected output. Then, the actual
input could be any query images from the same class of the normal
prompt. Last but not least, how to construct a “mental model” to
compare between one normal image and these query images? Despite
these challenges, we can imagine that the "mental model” should
satisfy several basic principles.

4.3 Qualitative Evaluation

Prompt Query WmCLIP AnomalyCLIP UniAD MetaUAS GTMask Prompt Query  WinCLIP AnomaIyCLIP UniAD MetaUAS GTMask

ml WA vy 3 : 5
',~ 3 .,«.‘ Z y & 4 -:‘
. : : v
~ >_ [ o ¥ 2 - »
: - ; e et £
y A X .. B P \ 1

Encoder: MetaUAS is compatible with any hierarchical architecture.

FAM aligns query and prompt features for better change segmentation.
L — \‘ y : f X \ , :
Wz’jkl = softmax (qu(ia ])(Flp(ka l))T) ’ | ‘

FP(i,j) « Ff (argmin (F (4, j), F (k, 1)) ) FP(i,5) < ) Y WignFF(k,1).
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v First, it should have a strong generalization ability to perceive
anomalies facing unseen objects or textures;

v Second, it can perform pixel-level anomaly segmentation only given

one normal image prompt; Hard Alignment

Soft Alignment —

v Third, its training does not depend on target domain distribution or Decoder predicts each pixel to determine whether it is changed. Specifically, we _, &
any guidance from language. ,

utilize Unet as our decoder because it is better suited for tasks requiring high | N 2
[1] https://jch.com/jch/notes/pc/ precision and the preservation of fine-grained details. sy N IREE o IR T g § L F RS




