

Anomaly Detection Challenges

Challenge 1:The anomaly data in the real-world is extremely scarcity, making the AD tasks highly challenging.

- ✓ Most unsupervised learning methods perform poorly in anomaly segmentation due to the lack of discriminative guidance from anomaly data.
- ✓ Recent works, e.g., DRAEM, CutPaste, and SimpleNet, attempt to synthesize anomalies, bringing superior anomaly segmentation performance. However, the improvements are limited because there is a semantic gap between real and synthesized anomalies.

Challenge 2: Generative modes, e.g., GANs and LDMs, achieve remarkable progress in creating realistic and diverse images, but they require a large number of training images.

Challenge 3: It is difficult to obtain accurate defect masks for generated images using generative modes.

Inspiration: How to generate realistic and diverse anomaly images with generative models given only few-shot real anomaly images?

Few-Shot Anomaly-Driven Generation for Anomaly Classification and Segmentation

Guan Gui¹, Bin-Bin Gao¹, Jun Liu, Chengjie Wang and Yunsheng Wu

2. Our Method: AnoGen

AnoGen Framework

Stage 1: Learn Anomaly Embedding Learning anomaly embedding given few-shot anomaly images. Initialize an embedding v to replace the condition embedding in LDM, and then optimize it with real-world anomaly images I_a^T ,

 $\boldsymbol{v}^* = \arg\min L_{LDM}(I_a^T, t, \boldsymbol{v})$

Stage 2: Guiding Anomaly Generation

Generating realistic, diverse and controllable anomaly images.

- \checkmark freeze the embedding v^* and inject it into the image as a condition
- \checkmark at inference, the area within the box will be retained, and the area outside the box will be replaced by the noisy version of I_n

 $z_{t} = z_{n}^{t} \odot (1 - M^{box}) + z_{t}^{'} \odot M^{box}$

Stage 3: Weakly-Supervised Anomaly Detection Reducing the confliction of possible normal pixels within the bounding box. \checkmark For high-confidence normal pixels within the box region, we set their loss to

 \checkmark For all pixels out of the box, we use the default segmentation loss;

 \checkmark randomly sample a normal image I_n , and give a bounding box mask M^{box}

3.1 Generated Anomaly Images By using three real anomaly images as a driving, we have successfully generated diverse, realistic and spatially controllable anomaly images.

3.2 Comparisons on Anomaly Classification and Segmentation

Metrics		CS-FLow	PaDim	PatchCore	RD4AD	DRAEM	AnoGen	DeSTSeg	AnoGen
Image	AU-ROC AU-PR	$97.5 \\ 97.7$	$\begin{array}{c} 91.2\\94.2\end{array}$	97.8 98.8	$98.7 \\ 97.8$	$\begin{array}{c} 97.1 \\ 98.5 \end{array}$	$\begin{array}{c} \textbf{98.7} \ (1.6 \uparrow) \\ \textbf{99.5} \ (1.0 \uparrow) \end{array}$	$98.3 \\ 99.4$	98.8 (0.5 ↑) 99.6 (0.2 ↑)
\mathbf{Pixel}	AU-ROC AU-PR	$\begin{array}{c} 93.4 \\ 59.6 \end{array}$	$\begin{array}{c} 96.9\\ 48.5\end{array}$	$\begin{array}{c} 97.5\\ 61.7\end{array}$	$\begin{array}{c} 93.9\\ 55.4\end{array}$	$\begin{array}{c}96.8\\67.4\end{array}$	$\begin{array}{c} \textbf{98.1} \ (\textbf{1.3} \uparrow) \\ \textbf{73.2} \ (\textbf{5.8} \uparrow) \end{array}$	$98.2 \\ 76.6$	98.8 $(0.6 \uparrow)$ 78.1 $(1.5 \uparrow)$

Generated anomalies effectively improve the model performance of both anomaly classification and segmentation tasks simultaneously.

k-shot 1 3	5	leaning embedding m	nask non-mask	support set	1-st set	2-nd set
$Image \begin{vmatrix} AU-ROC \\ AU-PR \end{vmatrix} \begin{cases} 97.7 & 98. \\ 98.9 & 99. \end{cases}$	$\begin{array}{c} 7 & 98.6 \\ 5 & 99.5 \end{array}$	Image AU-ROC 9 AU-PR 9	98.7 97.8 9.5 98.7	$Image \begin{vmatrix} AU-ROC \\ AU-PR \end{vmatrix}$	$98.7 \\ 99.5$	$\begin{array}{c} 98.5 \\ 99.1 \end{array}$
$\begin{array}{c c} Pixel & AU-ROC & 97.6 & 98. \\ AU-PR & 70.5. & 73. \end{array}$	$\begin{array}{c}1&98.2\\2&73.0\end{array}$	Pixel AU-ROC 9 AU-PR 7	$\begin{array}{ccc} 98.1 & 97.6 \\ 3.2 & 70.4 \end{array}$	Pixel AU-ROC AU-PR	$98.1 \\73.2$	$\begin{array}{c} 97.7 \\ 71.4 \end{array}$

