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Motivation
What is universal anomaly detection?
Universal anomaly detection aims to identify anomalies from novel or unseen objects, given a few or
even zero normal images and without training on this novel/unseen dataset.
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Motivation
State of the art methods

ü restricted to either zero-shot or few-shot
zero-shot: AnomalyCLIP [ICLR 24]，AdaCLIP [ECCV 24], 

few-shot： InCtrl [CVPR 24], PromptAD [CVPR 24], MetaUAS [NeurIPS 24]: 

ü destroy original ability of CLIP 
concatenate learnable tokens to intermediate layers of CLIP, 
such as AnomalyCLIP [ICLR 24] and AdaCLIP [ECCV 24]

ü require fine-tuning or heavy computation
PromptAD [CVPR 24], WinCLIP [CVPR 23]

We want to explore a universal AD (both zero-shot and few-shot) model, aiming to detect any
anomalies in image- and pixel-level without any training on target domains.
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Method
• AdaptCLIP Framework

The philosophy of AdaptCLIP is that “less and simpler could be better”, and it contains two key insights
based on three simple adapters.
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Method
• Insight 1: Alternating Learning

ü fixing two-class textual embeddings and learning 
visual tokens with a visual adapter.

simple residual multi-layer perceptron

ü fixing visual tokens and learning two-class textual 
prompt embeddings with a textual adapter.
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Method
• Why Alternating Learning?

ü alternating learning helps us fully utilize the prior knowledge of CLIP and thus improve cross-
domain generalization.

ü joint learning easily overfits and leads to poor generalization on novel datasets.
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Method
• Insight 2: Comparative Learning (few-shot)  
It is intuitive to use a normal image as a visual prompt for 
anomaly detection.

Step1: spatial alignment; 

Step2: joint contextual and aligned residual feature
Step3: prompt-query adapter 

normal prompt query anomaly mask 

Step1 Step2
Step3
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Method
• Effects of Comparative Learning

ü The joint of contextual information and aligned residual features performs better than residual
features alone (Line 6 vs. Line 5);

ü The best performance is achieved by a combination of TA, VA and PQA (our AdaptCLIP).
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Experiments
• Comparisons with State-of-the-Arts

ü Strong generalization; 
from industrial to medical

ü Fewer learnable parameters; 
zero-shot: 0.6M, few-shot: 1.8M

ü Both zero-shot and few-shot;

ü Training-Free on target domains;
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Experiments
• Qualitative Comparisons with Zero-shot and Few-shot AdaptCLIP
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Conclusion

ü Universal Anomaly Detection: We introduce a universal anomaly detection paradigm that focuses
on generalizing across open-scenario detection tasks.

ü AdaptCLIP Framework: We propose a novel AdaptCLIP framework built upon two key insights
(alternating and comparative learning) through three simple adapters (visual, textual and
prompt-query);

ü Flexible Prompts: AdaptCLIP supports diverse prompts, including fixed/learnable textual prompts,
few-shot normal image prompts, or a combination of both.

ü Superior Performance: Extensive evaluations across 8 industrial and 4 medical benchmarks
demonstrate that AdaptCLIP significantly outperforms state-of-the-art models.



AdaptCLIP: Adapting CLIP for Universal Visual Anomaly Detection, AAAI 2026

Thanks and Q&A


