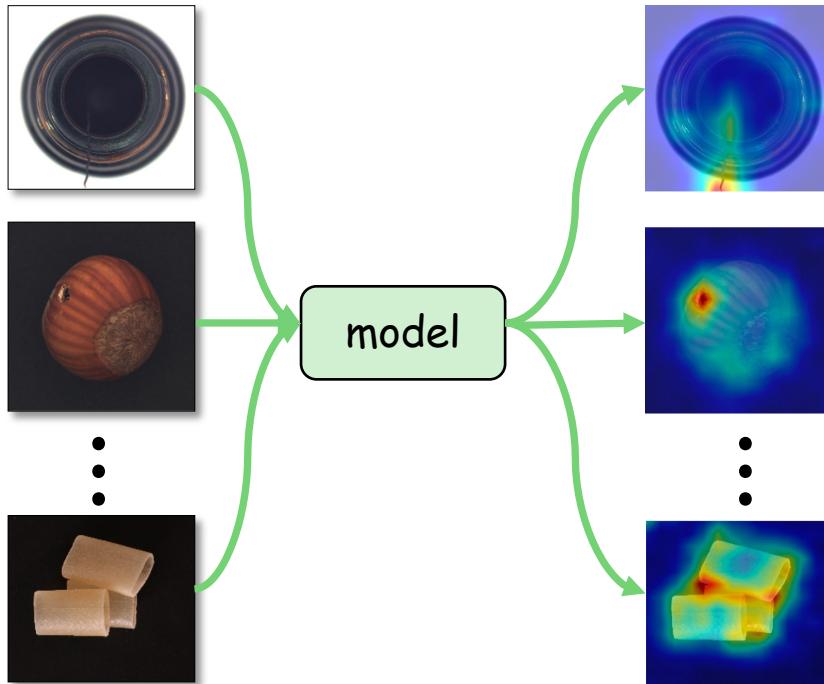


AdaptCLIP: Adapting CLIP for Universal Visual Anomaly Detection

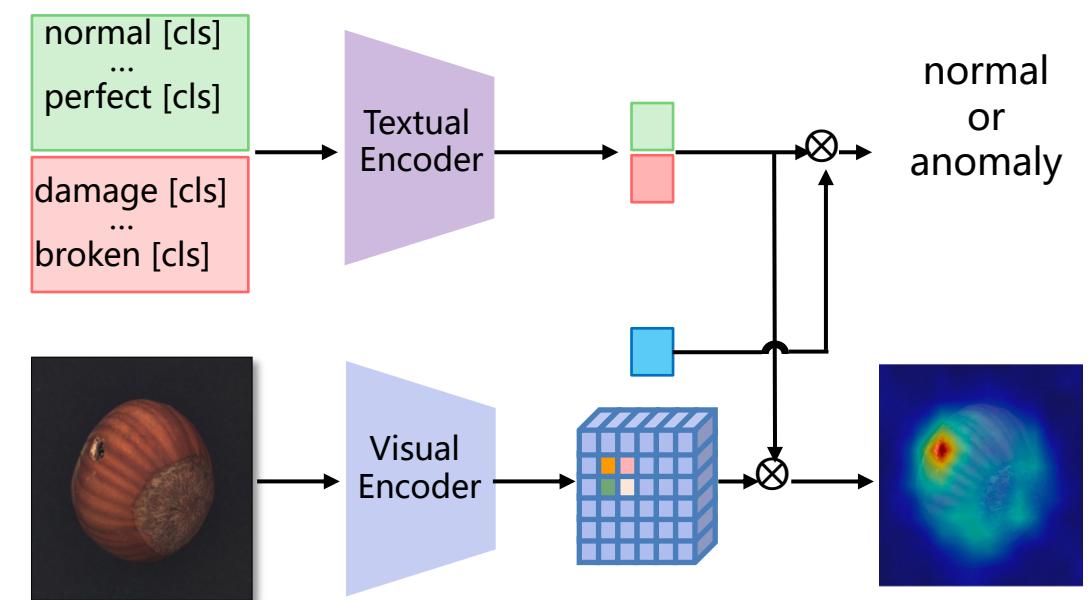
Bin-Bin Gao*, Yue Zhou*, Jiangtao Yan, Yuezhi Cai,
Weixi Zhang, Meng Wang, Jun Liu, Yong Liu, Lei Wang, Chengjie Wang

Presenter: Bin-Bin Gao


Tencent YouTu Lab

01-02, 2026

Motivation


What is universal anomaly detection?

Universal anomaly detection aims to identify anomalies from novel or unseen objects, given a few or even zero normal images and without training on this novel/unseen dataset.

Multi-Class AD

one model for multi-class

Zero-Shot AD with visual-language model

one model for any-class

Motivation

State of the art methods

- ✓ restricted to either zero-shot or few-shot

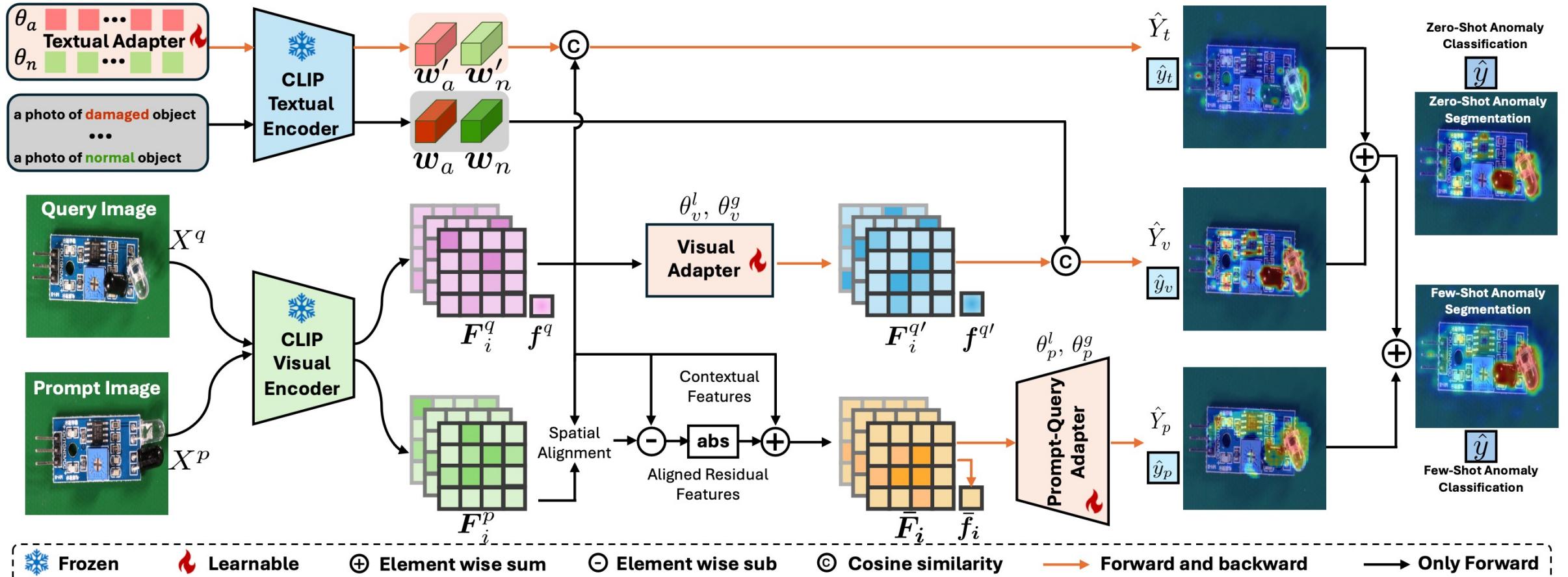
zero-shot: AnomalyCLIP [ICLR 24], AdaCLIP [ECCV 24],

few-shot: InCtrl [CVPR 24], PromptAD [CVPR 24], MetaUAS [NeurIPS 24]:

- ✓ destroy original ability of CLIP

concatenate learnable tokens to intermediate layers of CLIP,
such as AnomalyCLIP [ICLR 24] and AdaCLIP [ECCV 24]

- ✓ require fine-tuning or heavy computation


PromptAD [CVPR 24], WinCLIP [CVPR 23]

Methods	ZSFSOA w/o FT			
WinCLIP	✓	✓	✓	✓
AdaCLIP	✓	✗	✗	✓
InCtrl	✗	✓	✓	✓
AnomalyCLIP	✓	✗	✗	✓
PromptAD	✗	✓	✓	✗
AdaptCLIP	✓	✓	✓	✓

We want to explore a universal AD (both zero-shot and few-shot) model, aiming to detect any anomalies in image- and pixel-level without any training on target domains.

Method

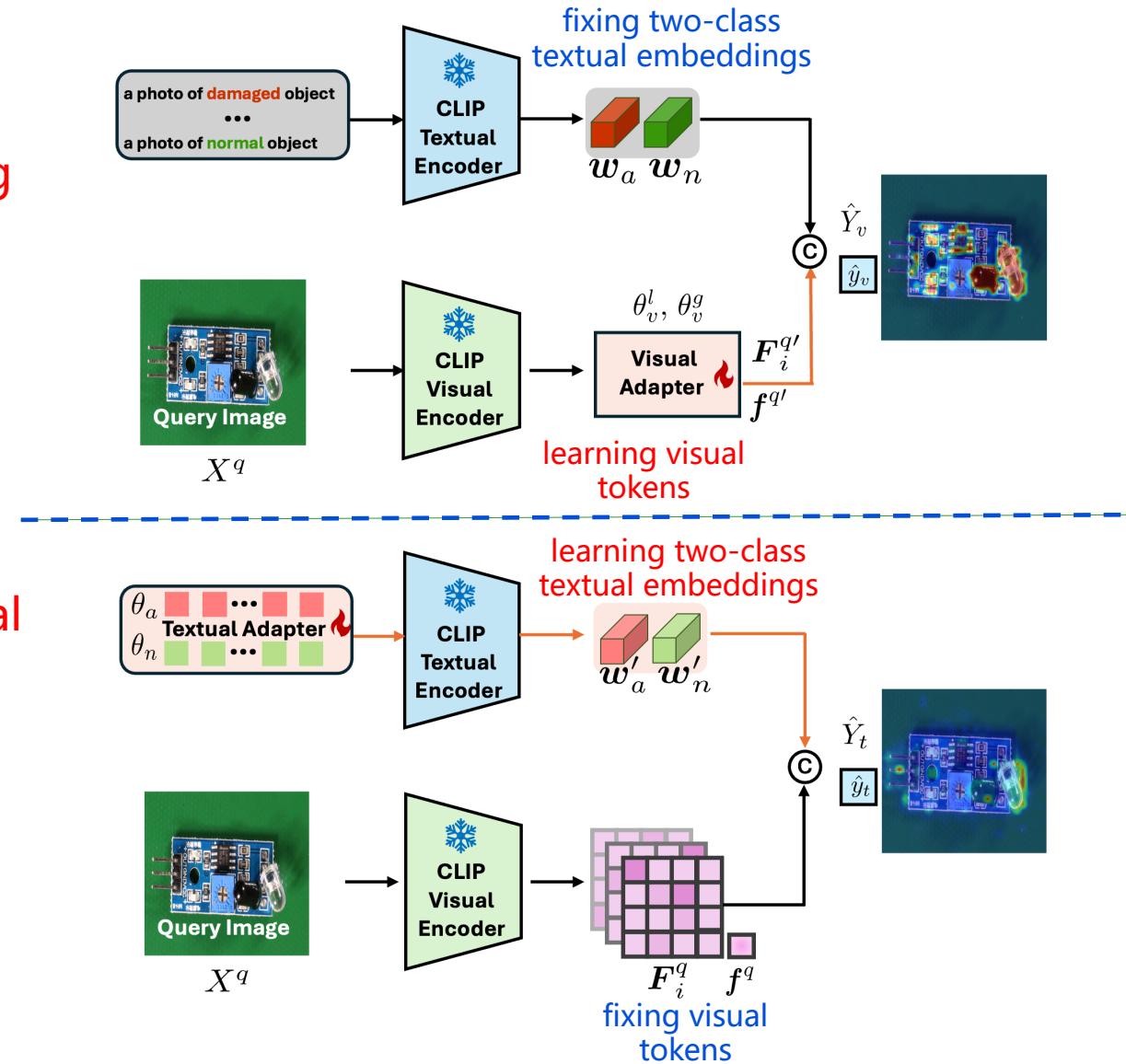
- AdaptCLIP Framework

The philosophy of AdaptCLIP is that “less and simpler could be better”, and it contains two key insights based on three simple adapters.

Method

- **Insight 1: Alternating Learning**

- ✓ fixing two-class textual embeddings and learning visual tokens with a visual adapter.


$$\mathbf{F}_i^{q'} = \mathbf{F}_i^q + \text{MLP}(\mathbf{F}_i^q; \theta_v^l); \mathbf{f}^{q'} = \mathbf{f}^q + \text{MLP}(\mathbf{f}^q; \theta_v^g),$$

simple residual multi-layer perceptron

- ✓ fixing visual tokens and learning two-class textual prompt embeddings with a textual adapter.

$$\mathbf{w}'_a = \mathcal{T}(\theta_a), \mathbf{w}'_n = \mathcal{T}(\theta_n)$$

two-class prompts embeddings

Method

- Why Alternating Learning?

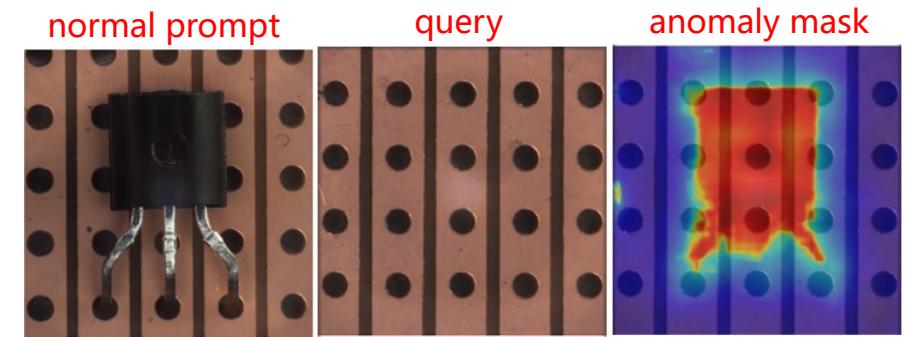
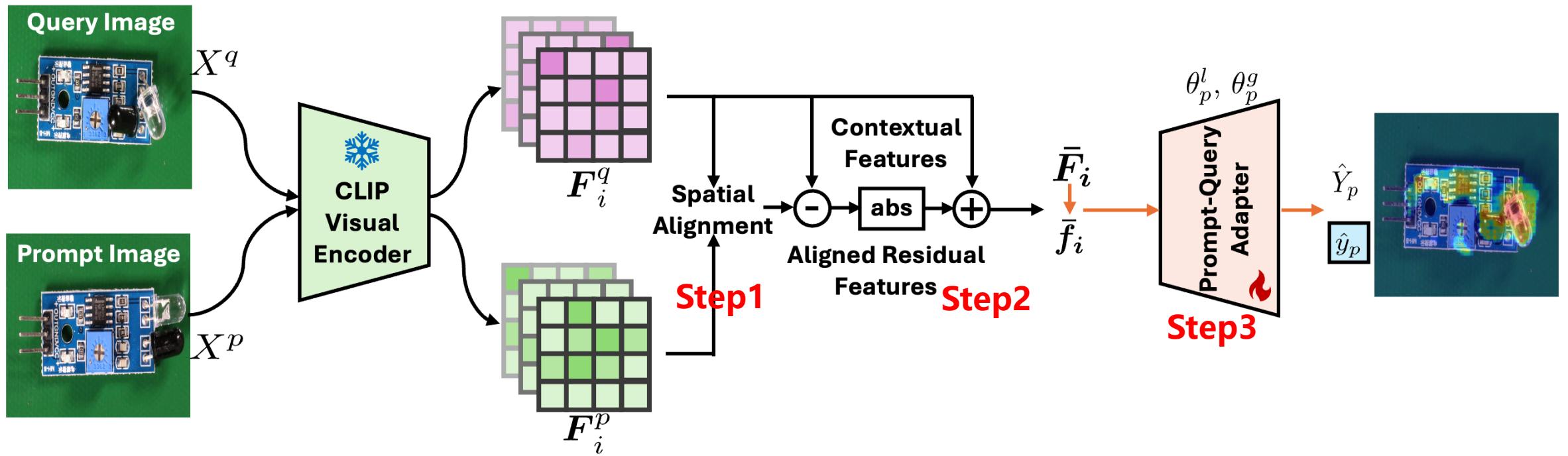
- ✓ alternating learning helps us fully utilize the prior knowledge of CLIP and thus improve cross-domain generalization.

Table 5: Ablation studies on different components.

No.	Methods	Shots	TA	VA	PQA	MVTec	VisA
0		0	✗	✗	✗	91.1 / 33.0	82.1 / 18.0
1	baselines	0	✓	✗	✗	92.2 / 31.4	82.9 / 19.7
2		0	✗	✓	✗	90.5 / 39.4	81.0 / 22.1
3	joint	0	✓	✓	✗	89.3 / 36.2	81.6 / 21.5
4	alternating	0	✓	✓	✗	93.5 / 38.3	84.8 / 26.1

- ✓ joint learning easily overfits and leads to poor generalization on novel datasets.

Method



- **Insight 2: Comparative Learning (few-shot)**

It is intuitive to use a normal image as a visual prompt for anomaly detection.

Step1: spatial alignment;

Step2: joint contextual and aligned residual feature

Step3: prompt-query adapter

Method

- Effects of Comparative Learning

- ✓ The joint of contextual information and aligned residual features performs better than residual features alone (Line 6 vs. Line 5);

Table 5: Ablation studies on different components.

No.	Methods	Shots	TA	VA	PQA	MVTec	VisA
0		0	✗	✗	✗	91.1 / 33.0	82.1 / 18.0
1	baselines	0	✓	✗	✗	92.2 / 31.4	82.9 / 19.7
2		0	✗	✓	✗	90.5 / 39.4	81.0 / 22.1
5	w/o context	1	✗	✗	✓	62.6 / 7.0	85.3 / 28.7
6	w context	1	✗	✗	✓	88.1 / 50.2	88.9 / 38.1
7	AdaptCLIP	1	✓	✓	✓	94.2 / 52.5	92.0 / 38.8

- ✓ The best performance is achieved by a combination of TA, VA and PQA (our AdaptCLIP).

Experiments

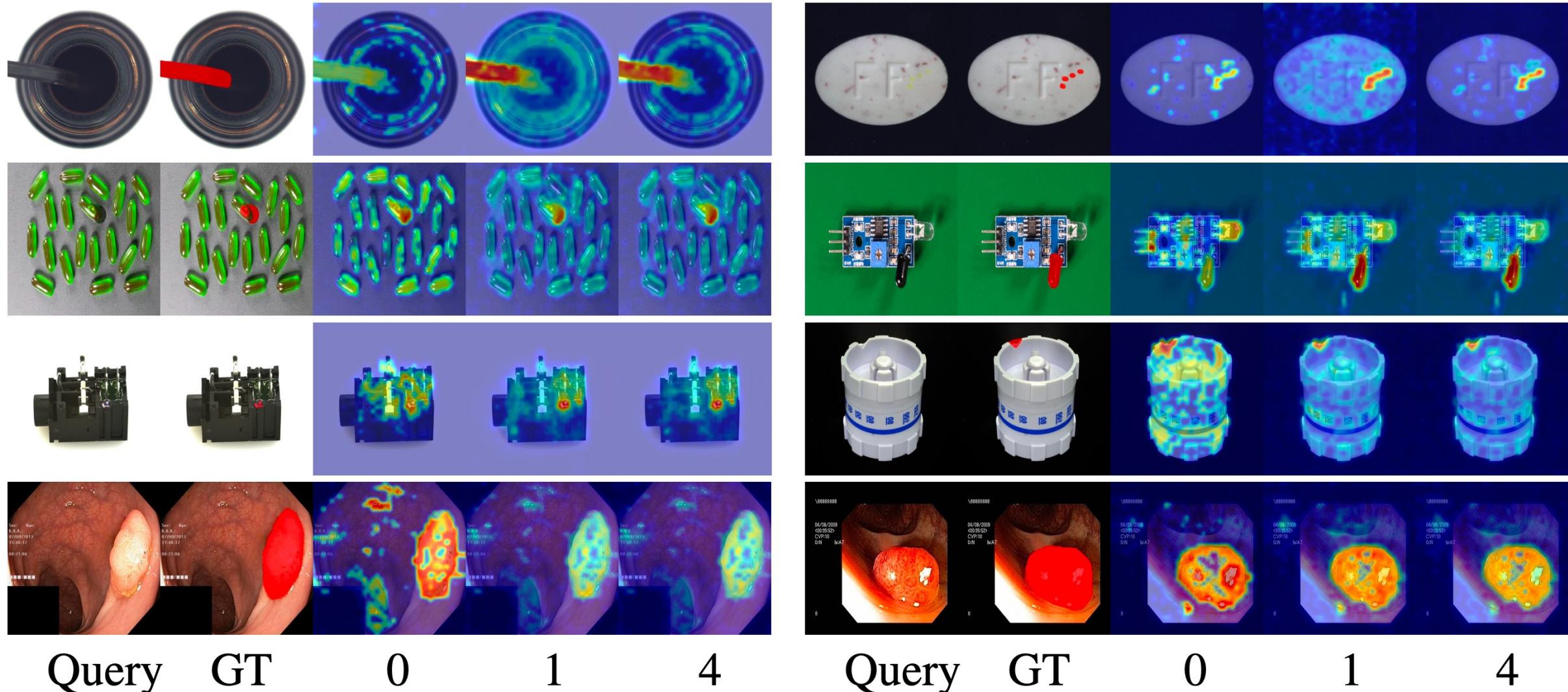
- Comparisons with State-of-the-Arts

Anomaly classification

Shots	Methods	Industrial								Medical			
		MVTec	VisA	BTAD	MVTec3D	DTD	KSDD	MPDD	Real-IAD	AVG	Br35H	Covid	AVG
0	WinCLIP (Jeong et al. 2023)	90.4	75.5	68.2	69.4	95.1	92.9	61.5	67.0	77.5	80.5	66.4	73.5
	AdaCLIP [†] (Cao et al. 2024)	90.7	81.7	89.9	76.2	92.7	96.6	64.0	73.3	83.1	96.7	69.4	83.0
	AnomalyCLIP (Zhou et al. 2024)	91.6	82.0	88.3	73.9	93.9	97.8	77.5	69.5	84.3	94.2	77.7	86.0
	AdaptCLIP-Zero	93.5	84.8	91.0	78.6	96.0	98.1	73.6	74.2	86.2	94.8	86.5	90.7
1	WinCLIP+ (Jeong et al. 2023)	93.6±0.4	80.0±2.4	84.4±1.5	74.1±0.4	97.9±0.2	93.8±0.4	69.3±2.9	74.7±0.2	83.4	80.1±2.1	90.1±3.6	85.1
	InCtrl (Zhu and Pang 2024)	91.3±0.4	83.2±2.4	88.5±0.4	75.3±1.3	97.9±0.3	92.0±0.9	73.0±2.7	76.6±0.0	84.7	83.9±6.4	89.2±5.3	86.6
	AnomalyCLIP+ (Zhou et al. 2024)	95.2±0.2	86.1±0.7	88.5±0.8	76.7±2.1	98.0±0.2	97.5±0.3	83.4±2.6	78.2±0.0	88.0	90.8±5.1	87.3±2.6	89.1
	AdaptCLIP	94.5±0.5	90.5±1.2	93.4±0.0	81.7±1.5	98.0±0.0	96.9±0.3	83.8±2.2	81.8±0.3	90.1	93.7±2.4	91.8±2.5	92.8
2	WinCLIP+ (Jeong et al. 2023)	94.5±1.0	82.7±1.0	85.8±1.8	74.3±0.3	98.1±0.2	93.8±0.2	69.3±2.3	76.1±0.1	84.3	81.6±0.6	91.8±2.5	86.7
	InCtrl (Zhu and Pang 2024)	91.8±0.9	86.3±1.4	86.2±2.0	75.4±0.5	98.3±0.2	91.6±0.9	74.2±1.8	78.5±0.0	85.3	86.1±1.7	89.7±5.1	87.9
	AnomalyCLIP+ (Zhou et al. 2024)	95.4±0.1	87.8±0.5	89.2±1.1	78.3±1.3	98.2±0.1	97.9±0.2	83.4±1.5	78.3±0.0	88.6	91.5±4.0	89.3±2.7	90.4
	AdaptCLIP	95.7±0.6	92.2±0.8	93.4±0.2	82.9±1.1	98.3±0.0	97.2±0.0	84.4±0.7	82.9±0.2	90.8	94.0±1.7	94.9±0.9	94.5
4	WinCLIP+ (Jeong et al. 2023)	95.3±0.1	84.3±0.6	87.8±0.8	75.7±0.3	98.2±0.0	94.0±0.2	71.2±1.6	77.0±0.0	85.4	82.3±0.4	92.9±2.1	87.6
	InCtrl (Zhu and Pang 2024)	93.1±0.7	87.8±0.2	67.5±2.4	78.1±1.1	97.7±0.1	91.6±0.9	78.6±2.3	81.8±0.0	84.5	89.1±1.2	91.4±4.1	90.3
	AnomalyCLIP+ (Zhou et al. 2024)	96.1±0.1	88.8±0.5	90.5±1.2	79.2±1.3	98.4±0.1	97.8±0.1	86.3±1.8	78.4±0.0	89.4	91.1±4.4	91.4±3.0	91.3
	AdaptCLIP	96.6±0.3	93.1±0.2	93.3±0.3	84.2±0.6	98.5±0.1	97.0±0.2	86.8±1.1	83.9±0.2	91.7	93.7±2.0	95.8±0.9	94.8

Anomaly segmentation

Shots	Methods	Industrial								Medical			
		MVTec	VisA	BTAD	MVTec3D	DTD	KSDD	MPDD	Real-IAD	AVG	Kvasir	Endo	AVG
0	WinCLIP (Jeong et al. 2023)	18.2	5.4	12.9	5.3	9.8	7.1	14.1	3.3	9.5	27.8	23.8	25.8
	AdaCLIP [†] (Cao et al. 2024)	39.1	31.0	42.9	37.5	75.2	48.2	25.9	30.5	41.3	36.6	43.7	40.1
	AnomalyCLIP (Zhou et al. 2024)	34.5	21.3	45.5	30.5	62.6	51.9	28.9	26.7	37.7	39.6	46.6	43.1
	AdaptCLIP-Zero	38.3	26.1	41.8	31.4	68.7	58.3	25.3	28.2	39.7	45.3	52.0	48.7
1	WinCLIP+ (Jeong et al. 2023)	38.3±0.8	15.8±0.2	41.3±2.6	18.4±1.1	47.8±0.9	19.2±0.3	29.8±2.0	13.9±0.2	28.1	27.6±2.9	23.6±0.1	25.6
	InCtrl (Zhu and Pang 2024)	47.8±1.1	17.7±0.6	44.1±1.4	18.7±0.5	64.3±0.5	26.7±0.7	27.9±2.2	19.1±0.0	33.3	22.1±1.7	20.3±3.7	21.2
	AnomalyCLIP+ (Zhou et al. 2024)	40.8±0.1	24.8±0.9	41.3±1.1	30.6±1.1	67.4±0.4	47.5±0.5	34.2±0.8	27.9±0.0	39.3	46.9±3.9	47.8±4.9	47.4
	AdaptCLIP	53.7±0.9	38.9±0.3	60.6±1.0	40.7±0.6	76.9±0.1	57.8±1.2	33.5±2.5	36.6±0.1	49.8	49.2±4.7	52.4±4.7	50.8
2	WinCLIP+ (Jeong et al. 2023)	39.5±0.6	17.2±0.8	42.8±1.3	19.1±0.8	48.2±0.9	19.0±0.5	30.7±1.1	14.8±0.1	28.9	29.1±0.2	27.6±2.3	28.4
	InCtrl (Zhu and Pang 2024)	49.2±0.7	18.5±0.2	44.2±0.8	20.3±0.6	64.4±0.4	26.4±2.5	29.2±1.3	20.1±0.0	34.0	24.9±1.9	24.5±7.5	24.7
	AnomalyCLIP+ (Zhou et al. 2024)	41.5±0.1	26.2±0.7	41.9±0.6	32.4±1.5	68.1±0.2	47.6±0.4	35.3±1.1	28.1±0.0	40.1	47.3±2.9	49.6±4.8	48.5
	AdaptCLIP	55.1±0.5	40.7±0.6	61.0±0.6	42.3±1.1	77.4±0.2	57.5±1.1	35.0±0.7	37.8±0.1	50.9	49.0±4.1	53.1±4.2	51.1
4	WinCLIP+ (Jeong et al. 2023)	41.2±0.9	18.1±1.3	44.0±0.4	19.9±0.6	49.3±0.1	19.1±0.7	32.0±0.2	15.4±0.2	29.9	29.6±0.8	27.7±0.5	28.7
	InCtrl (Zhu and Pang 2024)	50.9±0.3	19.2±0.6	44.0±0.2	22.2±1.2	64.9±0.3	26.0±1.4	31.4±0.8	21.0±0.0	35.0	24.7±1.6	22.3±1.0	23.5
	AnomalyCLIP+ (Zhou et al. 2024)	42.4±0.0	27.5±1.1	45.8±3.0	33.4±1.3	68.5±0.2	46.4±0.7	36.8±1.0	28.2±0.0	41.1	45.9±1.5	49.2±3.4	47.6
	AdaptCLIP	57.2±0.8	41.8±0.6	62.3±0.3	44.5±0.3	78.2±0.2	56.4±1.4	37.4±1.1	39.1±0.3	52.1	47.5±2.7	52.2±3.1	49.9


Table 3: Complexity and efficiency comparisons.

Shots	Methods	CLIP Models	Input Size	# Params (M)	Inf.Time (ms)
0	WinCLIP (Jeong et al. 2023)	ViT-B-16+240	240×240	208.4 + 0.0	201.3
	AdaCLIP (Cao et al. 2024)	ViT-B-16+240	512×512	208.4 + 0.0	3912.6
	AnomalyCLIP (Zhou et al. 2024)	ViT-L/14@336px	518×518	428.8 + 10.7	212.0
	AdaptCLIP-Zero	ViT-B-16+240	512×512	208.4 + 0.4	49.9
1	WinCLIP+ (Jeong et al. 2023)	ViT-B-16+240	240×240	208.4 + 0.0	339.5
	InCtrl (Zhu and Pang 2024)	ViT-B-16+240	512×512	208.4 + 0.0	7434.9
	AnomalyCLIP+ (Zhou et al. 2024)	ViT-L/14@336px	518×518	427.9 + 5.6	158.6
	AdaptCLIP	ViT-B-16+240	512×512	208.4 + 1.4	54.0

- ✓ Strong generalization; from industrial to medical
- ✓ Fewer learnable parameters; zero-shot: 0.6M, few-shot: 1.8M
- ✓ Both zero-shot and few-shot;
- ✓ Training-Free on target domains;

Experiments

- Qualitative Comparisons with Zero-shot and Few-shot AdaptCLIP

Conclusion

- ✓ **Universal Anomaly Detection:** We introduce a universal anomaly detection paradigm that focuses on **generalizing across open-scenario** detection tasks.
- ✓ **AdaptCLIP Framework:** We propose a novel AdaptCLIP framework built upon two key insights (**alternating and comparative learning**) through **three simple adapters** (visual, textual and prompt-query);
- ✓ **Flexible Prompts:** AdaptCLIP **supports diverse prompts**, including fixed/learnable textual prompts, few-shot normal image prompts, or a combination of both.
- ✓ **Superior Performance:** Extensive evaluations across 8 industrial and 4 medical benchmarks demonstrate that AdaptCLIP significantly **outperforms state-of-the-art models**.

Thanks and Q&A