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Visual Anomaly Detection: from multi-class to any-class

one model for multi-class

Multi-Class AD

Challenges:

v'restricted to zero-shot or few-

 model | N

shot

normal [cls]
perfect [cls] Textual normal
Encoder " or
damage [cls] anomaly
broken [cls]
Visual

only zero-shot: AnomalyCLIP and AdaCLIP

only few-shot: InCtrl, PromptAD and MetaUAS

v" hurt original ability of CLIP

concatenate learnable tokens to intermediate
layers of CLIP, such as AnomalyCLIP ,AdaCLIP

v require fine-tuning or heavy computation

such as PromptAD and WinCLIP

Encoder

v N
_>®_’

Zero-Shot AD with visual-language model

one model for any-class

!

State of the art methods

Methods

ZSFSOAw/o FT

WinCLIP

InCtrl

v/
AdaCLIP v X X
XV v/

AnomalyCLIPvV X X
PromptAD X/ v/
MetaUAS X v /

AdaptCLIP v v/ V

NSNS

We want to explore a universal AD (both zero-shot and few-shot) model, aiming to
detect any anomalies without any dataset-specific fine-tuning

v fixing two-class textual embeddings and
learning visual tokens with a visual adapter.
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v’ fixing visual tokens and learning two-class
textual prompt embeddings with a textual

adapter.
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The philosophy of AdaptCLIP is that “less and simpler could be better”, and it
contains two key insights based on three simple adapters.

Our Contributions:

v We propose a simple but effective universal visual anomaly detection
framework (AdaptCLIP) based on visual-language CLIP, which is capable of
detecting any visual anomalies with a training-free manner on target domains.

v We find that adaptive visual and textual representations should be learned
alternately rather than jointly, using separate visual and text adapters.

v' We also find prompt-query comparative learning should incorporate contextual
and aligned residual features rather than relying solely on residual features.

v’ AdaptCLIP outperforms zero- and few-shot AD methods on 8 industrial and 4
medical benchmarks. Meanwhile, AdaptCLIP possesses simpler adapters, fewer
parameters, and competitive efficiency.

I't is intuitive to use a normal image as a visual prompt for anomaly detection.
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No. Methods Shots TA VA PQA MVTec VisA \/Al’rer'na‘ring |eamin9 helps us
0 0 X x X 91.1/33.0 8.1/18.0 fully utilize the prior knowledge of
1 baselines 0 v X X 02.2/31.4 82.9/19.7 CLIP and Thus imprlove Cross-
. 0 X v/ X 905/394 81.0/221 4omqin generalization (Line 4 vs. 3)
3 joint 0 v v X 893/36.2 81.6/21.5
4 alternatng 0 v v X 93.5/38.3 84.8/26.1 v The joint of contextual and
5 wlocontext 1 X X / 626/ 7.0 853/28.7 aligned residual features performs
6  w context 1 X X v 88.1/502 88.9/38.1 better than residual features
7 AdaptCLIP 1 « <  942/525 92.0/38.8 alone (Line 6 vs. Line 5);

Generally, few-shot normal image prompts help AdaptCLIP segment anomalies more
accurately and produce fewer false positives than in a zero-shot manner.



