

1. Motivation

Visual Anomaly Detection: from multi-class to any-class

Challenges:

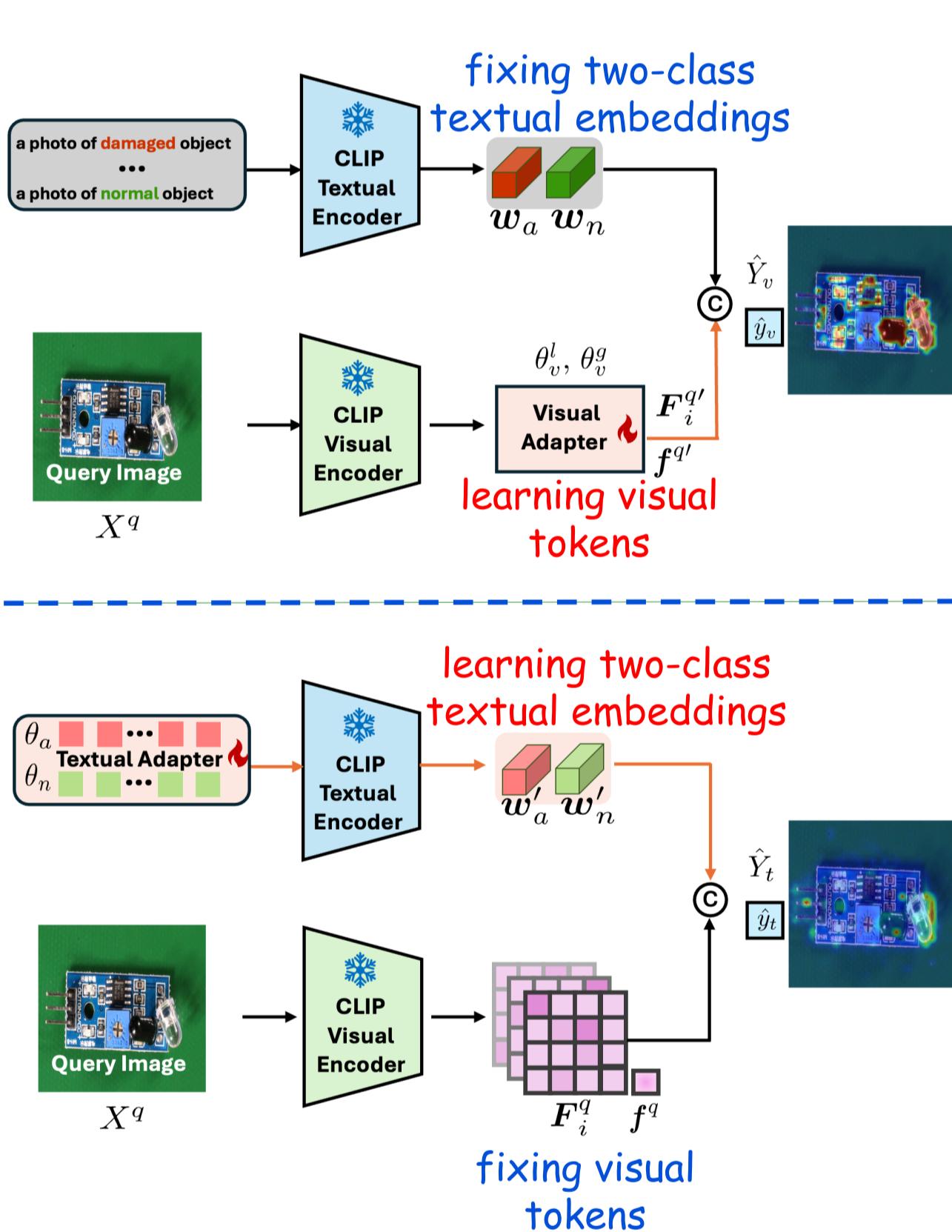
- ✓ restricted to zero-shot or few-shot
 - only zero-shot: AnomalyCLIP and AdaCLIP
 - only few-shot: InCtrl, PromptAD and MetaUAS
- ✓ hurt original ability of CLIP
 - concatenate learnable tokens to intermediate layers of CLIP, such as AnomalyCLIP, AdaCLIP
- ✓ require fine-tuning or heavy computation
 - such as PromptAD and WinCLIP

We want to explore a universal AD (both zero-shot and few-shot) model, aiming to detect any anomalies without any dataset-specific fine-tuning

2. Our Method

2.1 AdaptCLIP Framework

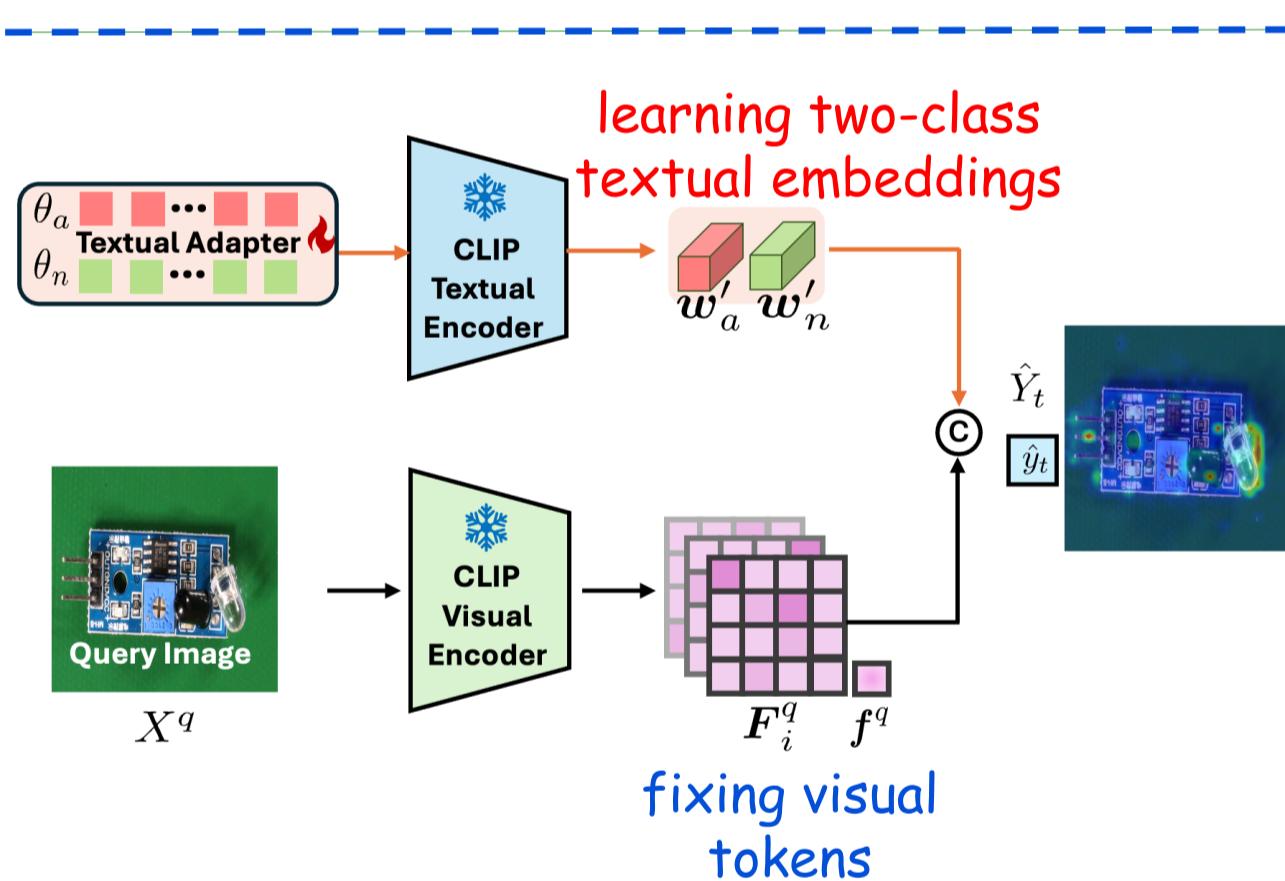
The philosophy of AdaptCLIP is that "less and simpler could be better", and it contains two key insights based on three simple adapters.


Our Contributions:

- ✓ We propose a simple but effective universal visual anomaly detection framework (AdaptCLIP) based on visual-language CLIP, which is capable of detecting any visual anomalies with a training-free manner on target domains.
- ✓ We find that adaptive visual and textual representations should be learned alternately rather than jointly, using separate visual and text adapters.
- ✓ We also find prompt-query comparative learning should incorporate contextual and aligned residual features rather than relying solely on residual features.
- ✓ AdaptCLIP outperforms zero- and few-shot AD methods on 8 industrial and 4 medical benchmarks. Meanwhile, AdaptCLIP possesses simpler adapters, fewer parameters, and competitive efficiency.

2.2 Insight 1: Alternating Learning (zero-shot)

- ✓ fixing two-class textual embeddings and learning visual tokens with a visual adapter.


$F_i^{q'} = F_i^q + \text{MLP}(F_i^q; \theta_v^l); f^{q'} = f^q + \text{MLP}(f^q; \theta_v^q)$
simple residual multi-layer perceptron

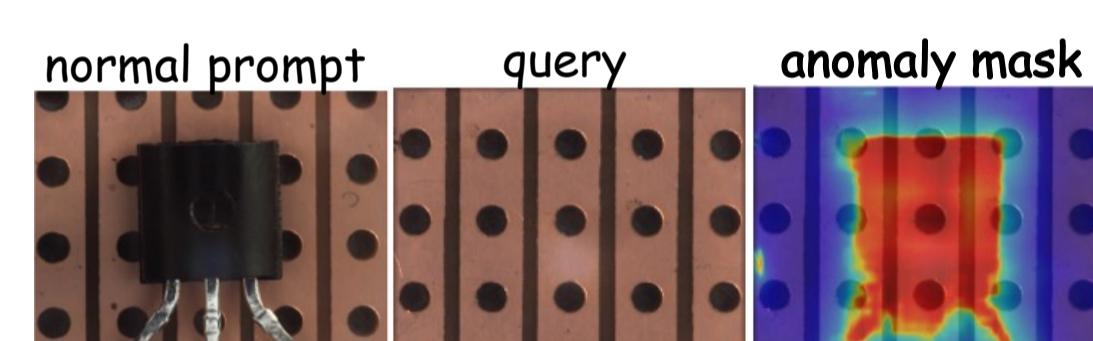
- ✓ fixing visual tokens and learning two-class textual prompt embeddings with a textual adapter.

$w'_a = \mathcal{T}(\theta_a), w'_n = \mathcal{T}(\theta_n)$

two-class prompts embeddings

2.3 Insight 2: Comparative Learning (few-shot)

It is intuitive to use a normal image as a visual prompt for anomaly detection.


Step1: spatial alignment;

$$F_i^p = F_k^p, k = \arg \min_j \|F_i^q - F_j^p\|_2.$$

Step2: joint contextual and aligned residual feature

$$\bar{F}_i = F_i^q + |F_i^q - F_i^p|.$$

Step3: prompt-query adapter $\hat{Y}_p = \mathcal{G}(\bar{F}; \theta_p)$

3. Experiments

3.1 Comparisons with Zero-/Few-Shot Methods

Shots	Methods	Industrial										Medical		
		MVTec	VisA	BTAD	MVTec3D	DTD	KSDD	MPDD	Real-IAD	AVG	Br35H	Covid	AVG	
0	WinCLIP (Jeong et al. 2023)	90.4	75.5	68.2	69.4	95.1	92.9	61.5	67.0	77.5	80.5	66.4	73.5	
	AdaCLIP ¹ (Cao et al. 2024)	90.7	81.7	89.9	76.2	92.7	96.6	64.0	73.3	83.1	96.7	69.4	83.0	
	AnomalyCLIP (Zhou et al. 2024)	91.6	82.0	88.3	73.9	93.9	97.8	77.5	69.5	84.3	94.2	77.7	86.0	
	AdaptCLIP-Zero	93.5	84.8	91.0	78.6	96.0	98.1	73.6	74.2	86.2	94.8	86.5	90.7	
1	WinCLIP+ (Jeong et al. 2023)	93.6±0.2	80.0±2.4	84.4±1.5	74.1±0.4	97.9±0.2	93.8±0.4	69.3±2.9	74.7±0.2	83.4	80.1±2.1	90.1±3.6	85.1	
	InCtrl (Zhu and Pang 2024)	91.3±0.4	83.2±2.4	88.5±0.4	75.3±1.3	97.9±0.3	92.0±0.9	73.0±2.7	76.6±0.0	84.7	83.9±6.4	89.2±5.3	86.6	
	AnomalyCLIP+ (Zhou et al. 2024)	95.2±0.2	86.1±0.7	88.5±0.8	76.7±2.1	98.0±0.2	97.5±0.3	83.4±2.6	78.2±0.0	88.0	90.8±1.1	87.3±2.6	89.1	
	AdaptCLIP	94.0±0.9	90.5±1.2	93.4±0.0	89.0±2.2	98.0±0.2	96.9±0.3	83.8±2.2	81.8±0.3	90.1	94.0±1.7	91.8±2.5	92.8	
2	WinCLIP+ (Jeong et al. 2023)	94.5±1.0	82.7±1.0	85.8±1.8	74.3±0.3	98.1±0.2	93.8±0.2	69.3±2.3	76.1±0.1	84.3	81.6±0.6	91.8±2.5	86.7	
	InCtrl (Zhu and Pang 2024)	91.8±0.9	86.3±1.4	86.2±2.0	75.4±0.5	98.3±0.2	91.6±0.9	74.2±1.8	78.5±0.0	85.3	86.1±1.7	89.7±5.1	87.9	
	AnomalyCLIP+ (Zhou et al. 2024)	95.4±0.2	87.8±0.5	89.2±1.1	78.3±1.3	98.2±0.1	97.9±0.2	83.4±1.5	78.3±0.0	88.6	91.5±0.4	89.3±2.7	90.4	
	AdaptCLIP	95.7±0.6	92.2±0.8	93.4±0.2	82.9±1.1	97.3±0.9	92.7±0.2	84.4±0.7	82.9±0.2	80.8	94.0±1.7	94.9±0.9	94.5	
4	WinCLIP+ (Jeong et al. 2023)	95.3±0.1	84.3±0.6	87.8±0.8	75.7±0.3	98.2±0.0	94.0±0.2	71.2±1.6	77.0±0.0	85.4	82.3±0.4	92.9±2.1	87.6	
	InCtrl (Zhu and Pang 2024)	93.1±0.7	87.8±0.2	67.5±2.4	78.1±1.1	97.7±0.1	91.6±0.9	78.6±2.3	81.8±0.0	84.5	89.1±1.2	91.4±4.1	90.3	
	AnomalyCLIP+ (Zhou et al. 2024)	96.1±0.1	88.8±0.5	90.5±1.2	79.2±1.3	98.4±0.1	97.8±0.1	86.3±1.8	78.4±0.0	89.4	91.1±4.4	91.4±3.0	91.3	
	AdaptCLIP	96.6±0.3	93.1±0.2	93.3±0.3	84.2±0.6	98.5±0.1	97.0±0.2	86.8±1.1	83.9±0.2	91.7	93.7±2.0	95.8±0.9	94.8	

Shots	Methods	Industrial										Medical		
		MVTec	VisA	BTAD	MVTec3D	DTD	KSDD	MPDD	Real-IAD	AVG	Kvasir	Endo	AVG	
0	WinCLIP (Jeong et al. 2023)	18.2	5.4	12.9	5.3	9.8	7.1	14.1	3.3	9.5	27.8	23.8	25.8	
	AdaCLIP ¹ (Cao et al. 2024)	39.1	31.0	42.9	37.5	75.2	48.2	25.9	30.5	41.3	36.6	43.7	40.1	
	AnomalyCLIP (Zhou et al. 2024)	34.5	21.3	45.5	30.5	62.6	51.9	28.9	26.7	37.7	39.6	46.6	43.1	
	AdaptCLIP-Zero	38.3	26.1	41.8	31.4	68.7	58.3	28.2	39.7	40.1	45.3	52.0	48.7	
1	WinCLIP+ (Jeong et al. 2023)	38.3±0.8	15.8±2.0	41.3±2.6	18.4±1.1	47.8±0.9	19.2±0.3	29.8±2.0	13.9±0.2	28.1	27.6±2.9	23.6±0.1	25.6	
	InCtrl (Zhu and Pang 2024)	47.8±1.1	17.7±0.6	44.1±1.4	18.7±0.5	64.3±0.5	26.7±0.7	27.9±2.2	19.1±0.0	33.3	22.1±1.7	20.3±3.7	21.2	
	AnomalyCLIP+ (Zhou et al. 2024)	40.8±0.1	24.8±0.9	41.3±1.1	30.6±1.1	67.4±0.4	47.5±0.5	34.2±0.8	27.9±0.0	39.3	46.9±3.9	47.8±4.9	47.4	
	AdaptCLIP	53.7±0.9	38.9±0.3	60.6±1.0	40.7±0.3	76.9±0.1	57.8±1.3	33.5±2.5	36.6±0.1	49.8	49.2±4.7	52.4±4.7	50.8	
2	WinCLIP+ (Jeong et al. 2023)	39.5±0.6	17.2±0.8	42.8±1.3	19.1±0.8	48.2±0.9	19.0±0.5							