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Coordinate Descent Fuzzy Twin Support Vector
Machine for Classification

Bin-Bin Gao, Jian-Jun Wang, Yao Wang, Chan-Yun Yang

Abstract—In this paper, we develop a novel coordinate descent
fuzzy twin SVM (CDFTSVM) for classification. The proposed
CDFTSVM not only inherits the advantages of twin SVM but
also leads to a rapid and robust classification results. Specifically,
our CDFTSVM has two distinguished advantages: (1) An effective
fuzzy membership function is produced for removing the noise
incurred by the contaminant inputs. (2) A coordinate descent
strategy with shrinking by active set is used to deal with the
computational complexity brought by the high dimensional input.
In addition, a series of simulation experiments are conducted to
verify the performance of the CDFTSVM, which further supports
our previous claims.

Keywords—Coordinate descent, Fuzzy, Active set shrinking,
High-dimensional input, TSVM, SVM.

I. INTRODUCTION

SUPPORT vector machine (SVM),invented by Vapnik [1],
is a great method for machine learning. At present, its

applications have been largely expanded. Prominent examples
include machine fault diagnosis [2], image identification [3],
text classification [4], and more.

As far as SVM itself is concerned, there has been many
variants in literature. twin support vector machine (TSVM),
as one of the most successful variants, in recent years has
caused much attention and been widely studied. TSVM o-
riginates the generalized eigenvalue proximal support vector
machine (GEPSVM), the work of Mangasarian and Wild [5]
in 2006. The main idea of GEPSVM is to replace two parallel
hyperplanes with two nonparallel ones. Following this concept,
Jayadeva et al. [6] proposed the TSVM in 2007. Different
from the GEPSVM involving a set of generalized eigenvalue
problems, the induced optimal problems in TSVM consist
of two quadratic programming problems which all share the
formulation of a typical SVM but is about 4 times faster than
SVM with almost identical accurate performance. Since then, a
series of improvements on TSVM have been produced. such as
Least square TSVM [7], Structural TSVM [8], Robust TSVM
[9], Laplacian smooth TSVM [10] etc. One can refer to the
survey paper [11] for more.

Conventional SVM intrinsically treats every input sample in
equivalence. However, when the samples are in low quality or
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polluted by additional noise, both SVM and its most variants
often lead to a poor generalization performance. In order
to tackle such problem, a category of fuzzy support vector
machines are hence developed, such as Lin and Wang [12],
[13], Tang [14] and Yang et al. [15] etc. The elementary
concept of fuzzy SVM is to allocate a small active or passive
confident membership to each input sample consistent with
the “fuzziness” which the sample has carried to reduce its
influence on the optimization. The membership is generally
assigned according to the sample’s confidence intrinsically re-
lated to its native class. The introduction of fuzzy membership
reduces effectively the uncertainty caused by the sample noise
and leads to a robust classifier.

Here, we have noticed that there is a chance to connect
the concept of TSVM and fuzzy membership for pursuing
both the computational efficiency and the robust performance.
Similar to the conventional SVM, TSVM is also limited by
the noise deterioration. Due to the reason, we seek a method
to firmly embed the fuzzy concept into TSVM in this study. In
addition, we employs further the coordinate descent method to
speed-up the computations of the union of TSVM and FSVM.
Thus, a novel CDFTSVM is proposed in this paper. Numerical
experiments show that the proposal brings more satisfactory
effects on both classification accuracy and computational time,
compared with the original stumps.

II. BACKGROUND

With a set of n-dimensional l training samples, a dataset
T = {(xi,yi)|xi ∈ Rn, i = 1, 2, · · · , l} is given first as a
composition of input samples xi and their class labels yi. This
paper main focuses on a binary classification problem, so we
assume yi = {+1,−1}1(i = 1, · · · , l). With the +1/ − 1
labels, the training set T is then divided into the l+ × n
dimensional matrix X+ and l− × n dimensional matrix X−
for positive and negative classes, respectively, where l+ and
l− denote the number of samples in the positive and negative
classes, respectively. The aggregations X = [XT

+ XT
−]

T denote
the whole set of input matrix of T .

A. Fuzzy Support Vector Machine
To tackle the difficulty of producing unambiguously a

generalized separating hyperplane with the uncertainty from
the noisy samples which are neighboring around the decision
boundary, fuzzy numbers, 0 ≤ si ≤ 1, i = 1, 2, · · · , l, carrying
additional information to reflect the noisy contaminated level

1Classification label +1 and -1 sometimes will be abbreviated as + and -
when misunderstandings are not caused.
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of the samples are introduced. The input dataset T is thus
modified as T ′ = (xi,yi, si). These fuzzy memberships
si’s are used to reduce the influence of the contaminated
samples for generating the decision function, and to achieve
the classifier more robust to the contamination, which induces
the fuzzy SVM as follow:

min
w,b,ξ

1

2
∥w∥2 + CsTξ

s.t. yi(w
Txi + b) + ξi ≥ 1, ξi ≥ 0, i = 1, 2, · · · , l.

(1)

Here, C denotes a scalar whose value determines the trade-off
and ξi is called as the slack variable which denotes the error
variable associated with the ith input sample. The classification
of any new input x can be obtained by determining the sign
of w∗Tx+ b∗ where w∗ and b∗ are the solution of (1).

B. Twin Support Vector Machine
Different from the conventional SVM, TSVM is in fact

constructed by two nonparallel decision planes, i.e.

wT
+x+ b+ = 0 and wT

−x+ b− = 0 (2)

To construct such two nonparallel decision planes, a pair of
primal optimization problems are set up:

min
w+,b+,ξ−

1

2
∥ X+w+ + e+b+ ∥2 +C1e

T
−ξ−

s.t. − (X−w+ + e−b+) + ξ− ≥ e−, ξ− ≥ 0
(3)

and

min
w−,b−,ξ+

1

2
∥ X−w− + e−b− ∥2 +C2e

T
+ξ+

s.t. (X+w− + e+b−) + ξ+ ≥ e+, ξ+ ≥ 0
(4)

where C1 > 0 and C2 > 0 are parameters, ξ+ and ξ− denote
the vectors of slack variables for positive and negative classes,
respectively, and e+, e− correspond to unit row vectors with
their dimensions exact to sample sizes in positive and negative
classes.

If the solutions to (3) and (4) are obtained respectively as
(w∗

+, b
∗
+) and (w∗

−, b
∗
−), TSVM then can easily label a new

input sample x by

f(x) = argmin
±

| w∗
±
Tx+ b∗± |
∥ w∗

± ∥
. (5)

III. FUZZY TWIN SUPPORT VECTOR MACHINE

In this part, we will present the model of FTSVM. To this
end, we introduce the fuzzy membership assignment first.

A. Fuzzy Membership Assignment
Fuzzy membership plays a key role in robust classification

learning. However there is no unified standard to construct
such fuzzy membership so far. Inspired by [14], we in our
paper present a fuzzy membership assignment for training
samples. Since the definition of fuzzy membership for both

positive and negative class can be obtained similarly, here we
just take the fuzzy membership for positive class for example.

The positive class centers φpcen in the feature space H is
first defined as:

φpcen =
1

l+

l+∑
j=1

φ(xj), for xj ∈ X+,

where φ(xj) ∈H denotes the transformation of an arbitrary
input data point xj .

Then the scattering hypersphere radii can be obtained by

rφ+ = max ∥ φ(xj)−φpcen ∥, for xj ∈ X+.

With above preparations, the fuzzy membership function can
be established as:

si+ =


µ(1−

√
∥ φ(xi)−φpcen ∥2/(r2φ+ + δ)),

if ∥ φ(xi)−φpcen ∥≥∥ φ(xi)−φncen ∥
(1− µ)(1−

√
∥ φ(xi)−φpcen ∥2/(r2φ+ + δ)),

if ∥ φ(xi)−φpcen ∥<∥ φ(xi)−φncen ∥
where δ > 0 is defined as a small constant which avoids the
vanishing of si+, and µ is a propose constant within [0, 1].

B. Linear FTSVM
Considering the crucial trade-off balance between the mar-

gin maximization and error minimization, a margin term,
similar to that in the standard SVM, should be added first.
Since TSVM has two proximal decision functions, two margin
terms 1/∥w+∥ and 1/∥w−∥ are accordingly defined for the
proximal decision functions, respectively. Together with the
introduced fuzzy numbers and two discrepant margin terms, a
weight regularized model of FTSVM for the linear kernel is
hence proposed:

min
w+,b+,ξ−

1

2
C1 ∥ w+ ∥2 +

1

2
∥ X+w+ + e+b+ ∥2 +C3s

T
−ξ−

s.t. − (X−w+ + e−b+) + ξ− ≥ e−, ξ− ≥ 0,
(6)

and

min
w−,b−,ξ+

1

2
C2 ∥ w− ∥2 +

1

2
∥ X−w− + e−b− ∥2 +C4s

T
+ξ+

s.t. (X+w− + e+b−) + ξ+ ≥ e+, ξ+ ≥ 0,
(7)

where both s+ ∈ Rl+ and s− ∈ Rl− are the fuzzy-number
vectors.

The Wolfe dual of the primal problems (6)-(7) can be easily
obtained by using KKT conditions. Here, we present the results
as follow:

max
α

eT−α−
1

2
αTH−(H

T
+H+ + C1E1)

−1HT
−α

s.t. 0 ≤ α ≤ C3s−,
(8)

max
β

eT+β −
1

2
βTH+(H

T
−H− + C2E2)

−1HT
+β

s.t. 0 ≤ β ≤ C4s+,
(9)
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where H+ = [X+, e+], H− = [X−, e−], and Ei =

(
I

0

)
(i = 1, 2). Relationships of the optimal solutions between the
primal problems (6)-(7) and their dual problems (8)-(9) are

u∗
+ = −(HT

+H++C1E1)H
T
−α

∗, u∗
− = (HT

−H−+C2E2)H
T
+β

∗

where u∗
± = [w∗T

± , b∗±]
T, α∗ and β∗ denote the optimal values

of α and β, respectively.
Once (8) and (9) are solved, the non-parallel proximal

hyperplanes similar to (2) can thus be subsequently obtained.
Then for a new input data point x ∈ Rn, the classification
decision function can also be similarly obtained as (5).

Actually, matrices HT
+H+ and HT

−H− are not always non-
singular in the dual problems of (8) and (9). To impose
on non-singular matrices HT

+H+ and HT
−H−, substitutions

HT
+H++λI and HT

−H−+λI are made for HT
+H+ and HT

−H−
to sustain the non-singularity, where I is a unit matrix with
dimensions identical to HT

+H+ or HT
−H−, and λ is a small

positive real number.

C. Nonlinear FTSVM
In nonlinear case, the dual proximal hyperplanes of FTSVM

can be stated as:

κ(x, XT)w+ + b+ = 0 and κ(x, XT)w− + b− = 0,

where κ(x1,x2) = ⟨φ(x1), φ(x2)⟩ is a kernel function. By
employing the fuzzy number si, the nonlinear primal problems
of a FTSVM can be expressed as:

min
w+,b+,ξ−

1

2
C1 ∥ w+ ∥2 +

1

2
∥ κ(X+, X

T)w+ + e+b+ ∥2

+ C3s
T
−ξ−

s.t. − (κ(X−, X
T)w+ + e−b+) + ξ− ≥ e−, ξ− ≥ 0,

(10)

min
w−,b−,ξ+

1

2
C2 ∥ w− ∥2 +

1

2
∥ κ(X−, X

T)w− + e−b− ∥2

+ C4s
T
+ξ+

s.t. (κ(X+, X
T)w− + e+b−) + ξ+ ≥ e+, ξ+ ≥ 0.

(11)

The Wolfe dual of the primal problems (10) and (11) are

max
α

eT−α−
1

2
αTS+(S

T
−S− + C1E1)

−1ST
+α

s.t. 0 ≤ α ≤ C3s−,
(12)

max
β

eT+β −
1

2
βTS−(S

T
+S+ + C2E2)

−1ST
−β

s.t. 0 ≤ β ≤ C4s+,
(13)

where S+ = [κ(X+, X
T), e+] and S− = [κ(X−, X

T), e−].
By designating v∗

± = [w∗T
± , b∗±]

T for solutions of the primal
problems of (10)-(11), there are parametric relationships be-
tween the optimal v∗

± and the optimal solutions α∗ and β∗ of
their corresponding dual forms (12)-(13):

v∗
+ = −(ST

+S++C1E1)S
T
−α

∗, v∗
− = (ST

−S−+C2E2)S
T
+β

∗.

Once solutions of the dual problems (12) and (13) are
obtained, the decision function for classifying a new data point
x ∈ Rn is eventually given by:

f(x) = argmin
±

| κ(x, XT)w∗
±
T + b∗± |√

w∗T
± κ(X,XT)w∗

±

.

IV. SPEEDING-UP FTSVM BY COORDINATE DESCENT
STRATEGY WITH ACTIVE SET SHRINKING

Our dual FTSVM involves a pair strictly convex QPPs ((8)
and (9) or (12) and (13)), but they can be solved similarly. Take
for example (8). By denoting Q = (HT

+H++C1E1)
−1HT

− and
Q = H−Q, it can be abbreviated as a quadratic expression:

min
α

f(α) =
1

2
αTQα− eT−α

s.t. 0 ≤ α ≤ C3s−.
(14)

In order to solve (14), a coordinate descent strategy with
active set shrinking is adopted. Because of the limited space,
we here omit the specifical theoretical details and interested
readers can find more in [16]–[19]. Instead, we present their
pseudo-code, which is exhibited in our algorithm 1.

In algorithm 1, ∇proj
i f(α) is a projected gradient and is

denoted as

∇proj
i f(α) =

{
min(0,∇if(α)), if αi = 0
∇if(α), if 0 < αi < C3si−
max(0,∇if(α)), if αi = C3si−

where ∇if denotes the i-th component of gradient ∇f .

V. NUMERICAL EXPERIMENTS

To show the learning efficiency and generalization ability
of CDFTSVM, numerical experiments related to classification
accuracy and execution time are conducted on some bench-
mark datasets. For the multi-classification datasets, we take the
majority class as the first class and gathering all the remainders
together as the adversary class. To equalize the influence of
the features in the input samples, every feature is normalized
and scaled-down within [0, 1].

In our experiments, the model parameters ci(i = 1, 2, 3, 4)
are carefully searched in the grids {2i|i = −8,−7, · · · , 8}
by setting C1 = C2 for TSVM, and C1 = C2, C3 = C4

for CDFTSVM. The grid-searching is conducted in a 10-
folds cross-validations, randomly selecting 30% of the whole
samples for learning with the equivalent conditions mentioned
above. In addition, Gaussian kernel is used to deal with the
nonlinear cases, i.e. κ(x1,x2) = exp(−∥x1 − x2∥2/g2). All
the experiments are implemented in MATLAB(R2014a) on
linux running on a PC with an Intel core i7 processor(3.6GHz)
with 32GB RAM, and the Matlab code of all the experiments
will be released on webpage2.

2https://github.com/gaobb/CDFTSVM
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Algorithm 1 CDFTSVM with active set shrinking

1: Compute Q = (HT
+H+ + C1E)−1HT

− and Qii = H−iQi

2: Set A← {1, · · · , l−}
3: Given ϵ and initialized α← 0,u+ ← 0
4: Initialized M ←∞ and m← −∞
5: while do
6: Initialize M ← −∞,m←∞
7: for all i ∈ A (a randomly and exclusively selected) do
8: Compute ∇if(α) = −H−iu+ − 1
9: Assign temporally ∇proj

i f(α)← 0
10: if αi = 0 then
11: if ∇proj

i f(α) > M , then A = A\{i} end if
12: if ∇proj

i f(α) < 0, then ∇proj
i f(α) ← ∇if(α)

end if
13: else if αi = C3si− then
14: if ∇proj

i f(α) < m, then A = A\{i} end if
15: if ∇proj

i f(α) > 0, then ∇proj
i f(α) ← ∇if(α)

end if
16: else
17: ∇proj

i f(α)← ∇if(α)
18: end if
19: M ← max(M,∇proj

i f(α))
20: m← min(m,∇proj

i f(α))
21: if ∇proj

i f(α) ̸= 0 then
22: αi ← αi

23: αi ← min(max(αi −∇if(α)/Qii, 0), C3si−)
24: u+i ← u+i −Qi(αi −αi)
25: end if
26: end for
27: if M −m < ϵ then
28: if A = {1, · · · , l−}, break
29: else
30: A← {1, · · · , l−},M ←∞,m← −∞
31: if M ≤ 0, then M ←∞. else M ←M end if
32: if M ≥ 0, then m← −∞. else m← m end if
33: end if
34: end while

A. Simulation on Artificial Dataset

Since CDFTSVM is a synthesized method, the experiments
first compare it with its original stumps, including the standard
SVM, TSVM, and FSVM. To validate its classification perfor-
mance, the comparative validation is first made on an artificial-
generated Ripleys synthetic dataset [20]. This “Ripleys syna-
thetic”, is often adopted to gauge a classifier performance. It
has 250 training samples with 2 dimensions and is equally
divided into two classes, and 1000 testing samples. In order
to decrease outlier data’s effect toward the hyperplane, we
assign a small positive real number µ = 0.1 for CDFTSVM.
We visualize the distribution of fuzzy membership value for
training samples under linear and nonlinear case in Fig 1,
respectively. As shown in Fig 1, compared to the samples
locating near the class center, the fuzzy membership value of
the samples which are far from the center of class always more
smaller.
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Fig. 1: Fuzzy membership distribution of training samples on Ripleys
dataset

Table I summarizes the classification performance of SVM,
FSVM, TSVM and our CDFTSVM on Ripleys dataset. The
results show that, with respect to the classification accuracy,
the linear standard SVM and the nonlinear CDFTSVM per-
forms best. The reason for the outperformance of the linear
standard SVM is more likely from the dataset itself than
from the classifier due to the fact that there is no noise
existing in the artificial dataset. The noiseless fact of the test
dataset suppresses the outstanding ability of CDFTSVM in
the experiment. The ability of CDFTSVM is confirmed if
we examine the accuracy in the nonlinear classification in
this table. From the viewpoint of execution time, CDFTSVM
shows its excellence in computational efficiency for both linear
and nonlinear learning in table I. The excellence manifests
the remarkable potential of employing CDFTSVM for a swift
classification.

TABLE I: Classification performance comparison on Ripleys dataset

Methods SVM FSVM TSVM CDFTSVM
Acc(%) Time(s) Acc(%) Time(s) Acc(%) Time(s) Acc(%) Time(s)

Linear 89.70 1.46 88.80 2.00 89.20 0.28 89.10 0.21
Nonlinear 90.40 1.56 91.10 1.79 90.50 0.60 91.30 0.24

Panels in Fig. 2 and Fig. 3 show the linear and nonlinear
separating hyperplanes produced by the comparative stumps
with suitable parameters. In the panels, while the standard
SVM and FSVM produce only a single hyperplane (Fig. 2(a),
2(b), 3(a), and 3(b)), TSVM and CDFTSVM produce a paired
proximal hyperplanes (Fig. 2(c), 2(d), 3(c), and 3(d)). Instead
of the decision boundary identical to the single hyperplane in
the standard SVM and FSVM, the pavement-space between
the proximal hyperplanes in TSVM and CDFTSVM can be
used for a more accurate discrimination. By comparing more
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Fig. 2: Results of linear SVM, FSVM, TSVM, and CDFTSVM on
Ripleys dataset.

of the CDFTSVM and TSVM, the positions of the proximal
hyperplanes of CDFTSVM is relatively exact than those of
TSVM. The fact reveals that CDFTSVM is more capable to
produce an unbiased accuracy than TSVM.
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Fig. 3: Results of nonlinear SVM, FSVM, TSVM, and CDFTSVM
on Ripleys dataset.

B. Simulation on Real Datasets

To further examine the performance of CDFTSVM, 13
commonly used datasets are gathered from the public UCI
machine learning dataset3.

Similarly, Tables II and III show the significant character-
istics which the classifier has concerned in the comparison,
including: classification accuracy and total execution time for
all algorithm-dataset combination, with both a linear and non-
linear kernel. In order to assess the generalization performance,
a 10-folds cross-validation is taken. It means every classifier
is repeatedly validated in the datasets with a ratio of 90%/
10% for respective training / testing phase. Ten characteristics
values are collected and averaged for the assessment, and a
standard deviation of the 10 collected classification accuracy is
provided in addition to the average to reflect the classification
robustness.

Comparing to its original stumps, namely, the standard
SVM, FSVM and TSVM, Tables II and III show an ex-
cellence performance of the CDFTSVM. Except the linear-
kernel validation on Pima ,Bupa and WDBC datasets, all
the rest datasets consistently confirmed the outperformance
of both average accuracy and the accuracy deviation of the
CDFTSVM. Additionally, the TSVM exhibits its computation-
al efficiency in table II and III. An obvious reduction in the
quadratic programming time actually leads to the efficiency.
Inheriting the merit, a drastic computational reduction of
CDFTSVM is also generally sustained. In short, the results
in Tables II and III indicate that whether linear or nonlinear,
CDFTSVM effectively improves the classification accuracy
and reduces learning time compared to the traditional stumps.
The excellence strongly reflects that the classifier is potential
for future applications.

VI. CONCLUSION

Based on twin support vector machines, the dual form of
a fuzzy TSVM is developed for classification in this study.
The developed dual form has been brought to a paired convex
quadratic programming problems, and confirmed it is capable
of solution uniqueness and singularity avoidance. The embed-
ded fuzzy concept enhances the capabilities of noise-resistance
and generalization. With the dual form, the FTSVM has been
brought to the coordinate descent with an active set shrinking
to speed-up the computations of the optimization with less
memory. Experiments with simulated and UCI datasets reveal
that an exceedingly high classification accuracy rate with less
computation time was achieved using both a linear kernel and
a nonlinear kernel of the CDFTSVM model.
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