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Abstract. Unsupervised reconstruction networks using self-attention
transformers have achieved state-of-the-art performance for multi-class
(unified) anomaly detection with a single model. However, these self-
attention reconstruction models primarily operate on target features,
which may result in perfect reconstruction for both normal and anomaly
features due to high consistency with context, leading to failure in de-
tecting anomalies. Additionally, these models often produce inaccurate
anomaly segmentation due to performing reconstruction in low spatial
resolution latent space. To enable reconstruction models enjoying high
efficiency while enhancing their generalization for unified anomaly detec-
tion, we propose a simple yet effective method that reconstructs normal
features and restores anomaly features with just One Normal Image
Prompt (OneNIP). In contrast to previous work, OneNIP allows for
the first time to reconstruct or restore anomalies with just one normal
image prompt, effectively boosting unified anomaly detection perfor-
mance. Furthermore, we propose a supervised refiner that regresses re-
construction errors by using both real normal and synthesized anomalous
images, which significantly improves pixel-level anomaly segmentation.
OneNIP outperforms previous methods on three industry anomaly de-
tection benchmarks: MVTec, BTAD, and ViSA.

Keywords: Unsupervised Reconstruction · Unified AD · Image Prompt

1 Introduction

Unsupervised visual anomaly detection aims to learn models only on normal
training samples and expects these learned models to be capable of detecting
anomalies at the image level and even localizing anomaly regions at the pixel
level for both normal and anomaly testing samples. Anomaly detection (AD)
has a wide range of applications, including video surveillance [13,28,40], medical
image diagnosis [19, 48], industrial defect inspection in manufacturing [3, 4, 26],
and more. Most AD methods [1, 10, 11, 20, 25, 35, 37, 38, 54] mainly focus on
training separated models for different objects or textures. However, this sepa-
rated paradigm (one model for one class) may be not practical, as it requires
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(a) Qualitative comparisons on selected com-
mon (left three columns) and camouflaged
(right three columns) anomaly images.
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(b) Testing metrics (I-ROC, P-ROC and P-PR)
comparisons as a function of training epoch on
MVTec testing set.

Fig. 1: Comparisons of state-of-the-art UinAD and our OneNIP. The proposed
OneNIP detects anomalies through learning comparison with one normal image
as a visual prompt. Compared to UniAD, OneNIP enjoys more accurate anomaly
localization (a) and faster convergence (b).

high memory consumption and storage burden, especially when the number of
classes increases. In contrast, unified AD (one model for all classes) attempts
to detect various anomalies for all categories using a single model. Compared
to the separated training mode, the unified AD paradigm is more challenging
as it requires handling more complex data distributions. Therefore, most AD
methods often suffer from a significant performance drop when extending them
from separated paradigms to unified ones. Furthermore, it seems necessary to
study unified AD from a foundational model perspective.

A recent work (UniAD) [52] attempts to detect multiple anomalies for all
categories with a unified model using a transformer reconstruction network.
However, the pure transformer suffers from over-fitting because of “identity
shortcut” issue, which appears as returning a direct copy of input disregarding
its content. This implies that even anomalous samples can be well recovered
with the learned model and hence fail to be detected. To address this issue,
UniAD [52] proposed a layer-wised query decoder and a neighbor-masked at-
tention (NMA) to prevent model learning from the shortcut. Similar to NMA
in UniAD, SSPCAB [35] learns to reconstruct the masked area using contextual
information implemented by dilated convolutional. Despite UniAD and SSPCAB
employing different architectures and implementation strategies, they share the
same spirit of reconstruction with context. In this way, the performance of AD
can be ensured as most objects inherently possess specific physical structures
or geometric characteristics as shown in Fig. 1a (left three columns). However,
for some complex scenarios, e.g., camouflaged anomalies (right three columns in
Fig. 1b), which refer to abnormal regions that are “seamlessly” embedded in their
context in an image, it is hard to effectively detect them only using contextual
information of themselves.

In order to explore a more general anomaly detection, let’s first recall how we
humans recognize anomalies. Generally, people are able to perceive anomalies
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when an input significantly deviates from those normal or expected patterns
stored in the human brain. There actually, in fact, exists evidence to sup-
port this point in neural science. For example, predictive coding theory states
that the human brain compares its expectations with the data it receives, and
sends discrepancies (prediction errors) to higher levels [32]. This process allows
the brain to perceive anomalies based on memory and contextual information.
PatchCore [37] indeed captures normal local patch features, stores them in a
memory bank, and then recognizes anomalies by comparing input features with
the memory bank. In addition, some distribution-based methods [1, 10] model
a multivariate Gaussian distribution for normal local features, then utilize a
distance metric to measure anomalies. However, these memory- and distribution-
based methods still struggle with detecting camouflaged anomalies because of
ignoring global structuration information.

Naturally, we raise a question: how to elegantly leverage both contextual and
global structural information to enhance the performance of anomaly detection?
In this paper, we propose a simple yet effective anomaly detection framework
that utilizes a normal image as a global prompt to guide the feature recon-
struction, which is inspired by predictive coding theory [32]. Under the guidance
of a normal image prompt, a feature reconstruction network can leverage self-
attention mechanisms to model contextual information, while also conveniently
facilitating interaction between target feature and global image prompt using
cross-attention. Therefore, our approach can effectively detect both common and
camouflaged anomalies by utilizing a normal image prompt as shown in Fig. 1a.
Compared to state-of-the-art UniAD, our method exhibits faster convergence as
shown in Fig. 1b. Our contributions are summarized as follows:
• We propose a novel unified anomaly detection framework, that unsupervised

reconstructs normal features utilizing both contextual information them-
selves and corresponding global information from a normal image prompt.

• To enhance the guidance of the normal image prompt, we introduce pseudo-
anomalous samples and propose an unsupervised restoration stream that
pushes these pseudo features to recover to their corresponding normal ones.

• We propose a supervised refiner that regresses reconstruction errors from
low to high resolution with both real normal samples and pseudo-anomalous
samples, which greatly boosts the performance of anomaly segmentation.

• Our method achieves state-of-the-art performance with a unified setting on
three industry anomaly detection benchmarks, MVTec, BTAD, and VisA.

2 Related Work

Embedding-based AD methods leverage offline features extracted from pre-
trained models for anomaly detection. It assumes that these offline features pre-
serve discriminative information and thus help to separate anomalies from nor-
mal samples. PaDiM [10], MDND [34], and DFM [1] model a normal distribution
based on normal features, then utilize a distance metric to measure anomalies.
PatchCore [37] captures normal features and stores them in a memory bank,
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and calculates anomaly scores by comparing all patch features and the memory
bank. However, computing the inverse of covariance in the normal distribution
or searching in the memory bank brings large memory-consuming. In addition,
there is a domain gap between target (industrial images) and source distribution
(e.g., ImageNet) if directly using offline features. CS-Flow [38] proposes to trans-
form normal feature distribution into Gaussian distribution via normalizing flow.
Further, PyramidFlow [22] combines latent templates and normalizing flow for
high-resolution anomaly localization. CFA [20] and PADA [33] propose feature
adaptation for adapting targeted datasets. Knowledge distillation methods [5,5,
11, 39, 42, 45, 46] train a student network to match a fixed pre-trained teacher
network. However, they always are limited by designing structural differences
between teacher and student.

Discriminator-based methods typically convert unsupervised anomaly de-
tection to supervised anomaly detection by introducing pseudo (synthesized)
anomaly samples. CutPaste [23] proposes a simple strategy to generate synthetic
anomalies, which cuts a small rectangular area of variable sizes and aspect ratios
from normal training images and pastes this patch back to the image at a random
location. Similar to CutPaste, DRAEM [54] generates pseudo anomaly images
using Perlin [30] and obtains binarized anomaly maps. CutPaste [23] learns an
image-level classifier for enhancing discrimination between normal and anomaly
features, while DRAEM [54] learns an additional pixel-level segmentation model
with pseudo-mask. PRN [56] presents a variety of anomaly generation strategies
for more accurate anomaly localization. DeSTSeg [57] proposes a denoising
knowledge distillation and employs a segmentation network for accurate anomaly
localization with synthetic samples. BGAD [51] proposes a boundary-guided
semi-push-pull loss for learning more discriminative features with normal and
synthetic samples. Instead of synthesizing anomalies on images, SimpleNet [25]
generates anomaly features by adding Gaussian noise to normal features and
then learns a binary discriminator to distinguish anomaly features from normal
ones. [8] proposes a self-supervised normalizing flow-based density estimation
model, which is trained by normal images and synthetic anomalous images.

Reconstruction-based AD methods assume that anomalous image regions
or features should not be able to be properly reconstructed since they do not
exist in normal training samples. Some works use generative models such as
auto-encoders [2, 6, 14, 16, 21, 44] and generative adversarial networks [29, 49, 53]
to reconstruct normal images. RGI [27] proposes a robust GAN-inversion that
can restore any input image (even with gross corruptions) to a clean image
and identify the corrupted region mask by solving the optimization problems
thereof. Some works frame anomaly detection as an inpainting problem, where
patches from images are partly masked. RIAD [55] randomly removes partial
image regions and reconstructs the image from partial inpaintings with a con-
volutional neural network. SSPCAB [35] learns to reconstruct masked regions
using contextual information with a masked convolutional kernel. To enhance
reconstruction diversity while avoiding the undesired generalization of anomalies,
a pyramid deformation module is proposed to model diverse normal and measure



OneNIP 5

the severity of anomaly in [24]. These methods tend to be computationally expen-
sive because they involve reconstruction in image space. The recent UniAD [52],
omniNAL [58] and FOD [50] reconstruct features extracted from a pre-trained
model and achieve state-of-the-art performance for unified anomaly detection.
However, pixel-level anomaly segmentation is still unsatisfactory.
Prompt-based AD methods using large pre-trained vision-language models,
e.g., CLIP [31], have shown unprecedented generality, and achieve impressive
performance on various tasks, such as zero- and few-shot image classification,
open-vocabulary object detection [12], and text-to-image generation [36]. Recent
studies, WinCLIP [18], SAA+ [7], AnomalyCLIP [59] and MVFA [17], have
demonstrated that utilizing multiple fixed textual prompts or learning a dynamic
textual prompt on a powerful CLIP model [31] can yield excellent performance
for zero- and few-shot anomaly detection. Furthermore, AnomalyGPT [15] ap-
plying multi-turn dialogues not only indicates the presence and location of the
anomaly but also provides a detailed description of the anomaly in a testing
image. However, these methods primarily rely on textual prompts to identify
anomalies. Different from them, we explore to detect anomalies via a normal
image as a visual prompt.

3 Methods

Our OneNIP is built on state-of-the-art UniAD and is mainly composed of
an unsupervised reconstruction, an unsupervised restoration, and a supervised
refiner as shown in Fig. 2. The unsupervised reconstruction and unsupervised
restoration share the same encoder-decoder architecture. The encoder mod-
els contextual information with a self-attention transformer, while the decoder
models the relationship between target features and a normal prompt with a
bidirectional cross-attention transformer. The supervised refiner regresses the
reconstruction errors from low to high resolution for more accurate anomaly
localization.

Concretely, for a normal input image In and its corresponding prompt image
Ip (In and Ip ∈ RH×W×3), we parallelly extract their offline features (Fn

and F p ∈ Rh×w×c) using a pre-trained backbone, e.g., EfficientNet-b4 [41].
Then, the self-attention encoder independently processes them with added po-
sitional embeddings for modeling contextual dependencies. Next, these encoded
features and prompt tokens are dynamically updated in two directions (prompt-
to-features and features-to-prompt) with a bidirectional decoder consisting of
multiple two-way cross-attention blocks. We expect the original feature Fn to
be well reconstructed by fully exploring both the context and relationship of the
target feature and normal image prompt. To further enhance the guidance of the
normal image prompt, we introduce pseudo-anomalous image Ia synthesizing
from In and propose an unsupervised feature restoration stream that pushes the
pseudo-anomalous feature F a to recover to its corresponding normal feature by
refusing the encoder-decoder network. At inference, the unsupervised restoration
stream can be flexibly removed. Finally, the reconstruction errors between the
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Fig. 2: Overview of OneNIP for unified anomaly detection. In the training
stage, both normal and synthetic images are fed a pre-trained backbone for extracting
multi-level representation. Under the guidance of a normal image prompt, the normal
features are reconstructed in an unsupervised reconstruction stream (Sec. 3.1),
and the synthetic anomaly features are restored in an unsupervised restoration
stream (Sec. 3.2). Furthermore, a supervised refiner (Sec. 3.3) is used to regress
reconstruction errors for both normal and synthetic anomaly images. The unsupervised
restoration stream will be removed at inference.

original and reconstructed ones are refined by a lightweight supervised refiner
module with real normal and pseudo anomaly samples and their pixel-level
anomaly masks. Next, we elaborately introduce them in this section.

3.1 Reconstruction with Normal Image Prompt

Revisiting UniAD. We focus on unified anomaly detection which requires a
model to handle more complex data distribution and thus is more challenging. As
we know, reconstruction-based UniAD [52] using an encoder-decoder transformer
is a powerful and state-of-the-art solution for unified anomaly detection and is
composed of neighbor-masked attention (NMA) and layer-wise query decoder
(LQD). The NMA limits that one feature can’t see itself and its neighborhoods
and thus takes its contextual features (long dependencies) for reconstruction.
On the other hand, a learnable query embedding qi is first fused with the
encoder embedding xe and then integrated with the outputs xi

d of the i-th
decoder layer. Experiments have proven that the learned query embedding can
alleviate over-fitting. For simplicity, we here omit MLP, residual connection, layer
normalization, and dropout in LQD, and then formulate two important steps in
the i-th block of LQD as follows:

q′ =softmax(qixe
T /

√
c)xe,

xi+1
d =softmax(q′xi

d

T
/
√
c)xi

d,
(1)

where c is the dimension of xe and x0
d is initialized by xe at the first block in

LQD. In actual experiments, Eq. 1 is implemented by multi-head self-attention [43].
In each block of LQD, it is important to note that qi is individual and learnable,
while xe remains fixed and unchanged. The LQD reconstructs features only by
themselves, which may lead to failure when facing challenging anomalies.
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Unidirectional decoder with static prompt. We expect the feature recon-
struction not only to rely on its structure and characteristics but also to be
guided by a normal prompt, aiming to reduce the difficulty of reconstruction
and improve the performance of anomaly detection. A simple and naive manner
is to directly replace the query embedding qi in the LQD with the encoder output
pe of a normal image prompt Ip, thereby enabling the interaction between the
prompt and target features. Therefore, we convert Eq. 1 as follows:

q′ =softmax(pexe
T /

√
c)xe,

xi+1
d =softmax(q′xi

d

T
/
√
c)xi

d.
(2)

The change is simple but has completely different implications and boosts the
performance of anomaly detection (Tab. 4). In Eq. 2, the prompt encoding
statically interacts with the target feature in a unidirectional manner, hence
we call it unidirectional decoder. However, this unidirectional mode may not be
flexible enough and may fail to align with the target feature especially when the
target feature is continuously updated.
Bidirectional decoder with dynamic prompt. Unlike the static prompt
in the unidirectional decoder, we dynamically update both prompt and target
features using a pair of bidirectional cross-attention as follows:

pi+1
d =softmax(pi

dx
i
d
T /

√
c)xi

d,

xi+1
d =softmax(xi

dp
i+1
d

T
/
√
c)pi+1

d ,
(3)

where p0
d and x0

d is initialized by pe and xe from the encoder module. The
above bidirectional decoder models two-directional feature interactions includ-
ing prompt-to-features and features-to-prompt. The first interaction performs
a cross-attention from prompt tokens (as queries) to the target features, and
the second interaction performs another cross-attention from the target features
(as queries) to prompt tokens. The next decoder block takes updated prompt
tokens and target features from the previous block. In this way, the target feature
reconstruction not only utilizes its contextual information but also leverages
the corresponding normal prompt dynamically. It is worth noting that this
bidirectional modeling way also enhances the flexibility of the prompt features
and can adapt to the distribution shift of target features to some extent. Last,
a final cross-attention is used to update prompt tokens on the outputs of the
bidirectional decoder, and its output is taken as the reconstructed one (F̂n) of
the original feature (Fn). The reconstruction loss function computes the mean
squared error (MSE) between the reconstructed and original features as

Lrec =
1

c× h× w

c∑
i=1

h∑
j=1

w∑
k=1

(Fn
i,j,k − F̂n

i,j,k)
2. (4)

3.2 Restoration with Normal Image Prompt

It can be observed that the unsupervised reconstruction learning is solely per-
formed on normal training images, which may lead the model to rely more on
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its contextual information and weaken the involvement of the image prompt
in the reconstruction process. To further enhance the guidance of the image
prompt, an expected manner is to increase the difficulty of the reconstruction
task, forcing the network to rely not only on contextual information from itself
but also on prompt information from the normal image prompt. To achieve
this, we introduce artificially synthesized pseudo anomaly image Ia, which can
be easily generated by adding corruptions or disruptions to a normal training
image In, such as CutPaste [23] and DRAEM [54]. Based on the pseudo anomaly
image, we can convert the previous reconstruction into a restoration problem that
expects to restore the anomaly feature F a to the normal one Fn with a normal
image prompt Ip. This restoration manner is consistent with the expectation of
reconstruction models during the testing phases.

Similar to the reconstruction process, we first feed a pair of images (Ia and
Ip) into a pre-trained backbone for extracting offline features (F a and F p) and
then obtain the ultimately repaired features F̂ a sequentially applying the offline
paired features into a self-attention encoder and a bidirectional cross-attention
decoder. Specifically, the self-attention encoder parallelly takes F a and F p as
inputs and outputs as x̄e and pe. Next, the bidirectional decoder is initialized
by x̄e and pe, and dynamically updated with Eq. 3. In the i-th block of the
bidirectional decoder, we denote dynamic feature and prompt as x̄i

d and pi
d,

which is easily obtained by simply replacing xi
d with x̄i

d in Eq. 3. Different
from the objective function Eq. 4 in unsupervised reconstruction, the restoration
loss function computes the MSE between the restored feature (F̂ a) and the
corresponding original normal feature (Fn) as

Lres =
1

c× h× w

c∑
i=1

h∑
j=1

w∑
k=1

(Fn
i,j,k − F̂ a

i,j,k)
2. (5)

3.3 Supervised Refiner

Given a normal training image In and the corresponding anomaly mask Mn

(all elements are zero), we can synthesize an anomaly image Ia and denote
its anomaly mask as Ma. Then, we feed the normal and synthesized images
{It}t={n,a} into a pre-trained backbone and derive their offline representation
as {F t}t={n,a}. Then, we reconstruct the normal Fn as F̂n with the proposed
reconstruction stream and restore anomaly F a as F̂ a with the proposed restora-
tion stream, respectively. Here, we use the absolute element-wise subtraction of
original and reconstructed (restored) features to measure their difference, that
is

Et = |F t − F̂ t|, t = {n, a}. (6)

In fact, the L2 norm of Et in Eq. 6 can be used to roughly localize anomaly
regions. In this way, however, it is hard to accurately locate abnormal regions
since feature reconstruction or restoration is performed in a low-resolution (i.e.,
1/16 of original input) latent space.



OneNIP 9

Note that the synthesized anomaly image Ia naturally carries pixel-level
anomaly mask Ma, we expect to fully utilize Ma to further refine reconstruction
errors from low to high resolution. To end this, we design a lightweight and pixel-
level refiner based on reconstruction errors for performing anomaly segmentation.
The refiner consists of several transposed convolution blocks following a 1×1
convolution layer. Here, each transposed convolution block upsamples the recon-
struction error Et by 2×, and it is composed of a 3×3 convolution, a BatchNorm,
a ReLU, and a 2×2 deconvolution. In our experiment, we employ two transposed
convolutional blocks and thus upscale the reconstruction error from 1/16 to 1/4
relative to the input image. Finally, the 1×1 convolution layer transforms the
channel number of upscaled reconstruction error to 1 and obtains an estimated
anomaly map as M̂ t. For compute loss between M̂ t and the ground-truth M t,
we further resize M̂ t to the size of M t. Considering that anomaly pixels are
typically in the minority in anomaly detection, we utilize Dice loss [47], which
is effective for learning from extremely imbalanced data, that is

Lseg = 1−
2 ·

∑H
i=1

∑W
j=1 M̂

t
i,j ·M t

i,j∑H
i=1

∑W
j=1(M̂

t
i,j)

2 +
∑H

i=1

∑W
j=1(M

t
i,j)

2
, (7)

where (i, j) represents a spatial location in M t or M̂ t.

3.4 Training Loss

During training, given an image of a specific class, we randomly sample a normal
image among all training images of this class to serve as its prompt by default. In
addition, we also explore other prompt strategies, e.g., fixed mode, which means
that only one fixed image prompt is used for each category during training. Con-
sidering all three objectives including unsupervised reconstruction, unsupervised
restoration, and supervised refiner in our OneNIP, the total training loss is

L = Lrec + Lres + λLseg, (8)

where λ > 0 is a weight that balances the importance of the two types of loss
functions Lrec + Lres and Lseg.

3.5 Inference

At inference, we first randomly select a normal training image for each class and
then pre-extract offline prompt features for constructing a class-aware prompt
pool {Pi} C

i=1. Given a testing image I and its feature F , we can derive an
appropriate prompt by computing the cosine similarity between the testing
feature F and the prompt pool because the class of the testing image is agnostic.
Pixel-Level Anomaly Segmentation: For unsupervised reconstruction, the
anomaly score map is calculated as the L2 norm of the reconstruction error as

Srec = ||F − F̂ ||2 ∈ Rh×w. (9)
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For supervised refiner, the anomaly score map is predicted as M̂ ∈ RH×W .
Finally, we combine Srec (resizing into original resolution) and M̂ together and
take it as the final anomaly segmentation map, that is

S = (1− α) · Srec + α · M̂, (10)

where α ∈ [0, 1] is a weight.
Image-Level Anomaly Classification: Anomaly classification aims to detect
whether an image contains anomalous regions. Following the previous work, we
take the maximum value of S as the image-level anomaly score.

4 Experiment

4.1 Experimental Setup

Following the previous works, we comprehensively evaluate our method on three
industry anomaly detection benchmarks, including MVTec [4], BTAD [26], and
VisA [60].
Protocol: We train a single model for detecting all categories following UniAD.
For fair comparisons, we use the original training/testing splits given in previous
works [4,26,60]. In our experiments, all images are resized to 224×224 for training
and testing unless otherwise specified.
Metric: We compare the state-of-the-art anomaly detection methods with our
OneNIP using ROC and PR metrics in image- and pixel levels. We argue that
the PR metric is better for anomaly segmentation, where the imbalance issue is
very extreme between normal and anomaly pixels [9, 60].
Comparison Methods: We compare our method with diverse state-of-the-
art anomaly detection methods including CS-Flow [38], PaDiM [10], DFM [10],
PatchCore [37], CFA [20], DRAEM [54], SimpleNet [25], and UniAD [52]. Here,
most methods are run with the publicly available Anomalib except for DRAEM [54],
SimpleNet [25], and UniAD [52] using official code.

4.2 Comparisons with State-of-the-Arts

Main Results. We report the results of image-level classification and pixel-level
segmentation on three industry AD datasets (MVTec, BTAD and VisA) and
compare our OneNIP with state-of-the-art methods in Tab. 1. Some important
observations are summarised as follows:

Most state-of-the-art methods suffer from a significant performance drop in
both image-level classification and pixel-level segmentation when extending one-
model-one-class setting to a one-model-all-classes one, which is also consistent
with observations in UniAD. For example, state-of-the-art SimpleNet [25] drops
about 21.4% (from 99.6% to 78.2%) in I-ROC and 17.1% (from 98.1% to 81.0%)
in P-ROC, respectively; Our method beats all competitors and outperforms the
state-of-the-art UniAD by a large margin for pixel-level anomaly segmentation on
all three datasets, e.g., from 44.7% to 63.7% on MVTec, from 50.9% to 56.8% on

https://github.com/openvinotoolkit/anomalib
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Table 1: Image-level anomaly classification and pixel-level anomaly segmen-
tation comparisons with ROC/PR metric on MVTec, BTAD and VisA. All
methods are evaluated under the unified setting. The best and second-best results
are highlighted in red and blue, respectively. Note that the results are averaged over
multiple categories and the full results of each category are presented in supplementary
material.

Embedding-based Discriminator-based Reconstruction-based
Datasets Metric↑ CS-Flow [38] PaDiM [10] DFM [1] PatchCore [37] CFA [20] DRAEM [54] SimpleNet [25] UniAD [52] OneNIP

I-ROC/PR 81.4 / 90.2 87.5 / 92.8 69.7 / 89.8 89.8 / 96.3 80.4 / 91.0 91.4 / 95.3 78.2 / 90.0 96.5 / 98.9 97.9 / 99.3MVTec [4] P-ROC/PR 93.8 / 33.8 95.5 / 37.8 96.5 / 42.4 96.4 / 50.1 90.7 / 37.1 85.2 / 49.6 81.0 / 24.8 96.8 / 44.7 97.9 / 63.7

I-ROC/PR 91.8 / 96.3 95.7 / 97.4 68.8 / 82.8 89.2 / 96.4 87.5 / 87.7 84.7 / 95.0 90.3 / 95.0 92.2 / 97.9 92.6 / 98.5BTAD [26] P-ROC/PR 95.9 / 34.6 96.7 / 48.7 96.3 / 48.0 96.3 / 48.4 95.6 / 40.4 74.2 / 12.3 78.8 / 36.2 97.1 / 50.9 97.4 / 56.8

I-ROC/PR 75.8 / 80.0 78.1 / 78.3 51.6 / 77.8 90.3 / 92.0 69.0 / 73.8 81.8 / 85.8 89.2 / 92.2 90.8 / 93.0 92.5 / 94.5VisA [60] P-ROC/PR 95.6 / 18.6 95.9 / 17.1 96.5 / 25.2 96.8 / 38.2 91.4 / 16.8 78.1 / 15.1 95.3 / 33.1 98.4 / 33.6 98.7 / 43.3

BTAD, and 33.6% to 43.3% on VisA; Some methods are not robust to different
application scenarios while our method consistently outperforms state-of-the-
art methods. For example, DRAEM achieves 49.6% P-PR on MVTec, but only
12.3% on BTAD and 15.1% on VisA; For image-level anomaly classification, our
method also surpasses UniAD in most cases, e.g., improving I-ROC performance
from 96.5% to 97.9% on MVTec, and 90.8% to 92.5% on VisA.

Furthermore, we also compared the trend of testing metrics (I-ROC, P-
ROC and P-PR) for UniAD and our OneNIP with the number of training
epochs increased, as shown in Fig. 1b. It can be observed that our method only
requires significantly fewer epochs to achieve the same performance as UniAD,
especially for P-PR. This reveals that the introduction of a normal image prompt
and supervised refiner indeed accelerates the convergence of the reconstruction
model.

Table 2: Comparisons with state-of-the-art
UniAD on a more complex data distribution
(one model for multiple datasets).

Datasets #Classes Metric ↑ UniAD [52] OneNIP

MVTec [4] 15 I-ROC/PR 94.8/98.0 97.1/99.0
P-ROC/PR 96.2/42.1 97.6/61.1

BTAD [26] 3 I-ROC/PR 92.0/97.1 92.0/97.5
P-ROC/PR 97.1/48.0 97.9/59.0

VisA [60] 12 I-ROC/PR 89.9/92.4 91.9/93.9
P-ROC/PR 98.3/33.2 98.6/40.6

All 30 I-ROC/PR 92.6/95.7 94.5/96.8
P-ROC/PR 97.1/39.1 98.0/52.4

Results on More Complex
Distribution. In Tab. 1,
we train a unified anomaly
detection model for each
dataset following the previous
UniAD. To further demon-
strate the effectiveness of the
proposed OneNIP when fac-
ing a more complex data dis-
tribution, we merge MVTec,
BTAD, and VisA into a larger
scale and more categories
dataset, then train UniAD
and OneNIP on the merging
dataset. We report the image-level classification and pixel-level segmentation
results including the average over all 30 categories, and the mean results of each
dataset in Tab. 2.

Our OneNIP still significantly outperforms the state-of-the-art UniAD in
both image-level classification (94.5% vs. 92.6% in I-ROC) and pixel-level seg-
mentation (52.4% vs. 39.1% in P-PR) when evaluating on a more complex data
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Fig. 3: Qualitative comparisons of UniAD (second and sixth rows) and our OneNIP
(third and seventh rows) on MVTec (15 classes), BTAD (3 classes) and VisA (12
classes). Here, the first and fifth rows are original testing images, and the fourth and
eighth rows are their corresponding anomaly masks highlighted with red color.

distribution (i.e., one model for multiple datasets). Furthermore, there is no
significant performance drop from the unified case (one model for multi-class)
in Tab. 1 to a more unified case (one model for multi-dataset) in Tab. 2, while
most existing methods suffer from a significant performance drop when they are
extended to complex distributions (i.e., one model for all classes).

Table 3: Results comparisons of OneNIP with
different resolutions on MVTec, BTAD and
VisA.

Datasets Metric ↑ 224×224 256×256 320×320

MVTec [4] I-ROC/PR 97.9/99.3 97.6/99.2 97.9/99.3
P-ROC/PR 97.9/63.7 97.8/64.7 97.9/65.9

BTAD [26] I-ROC/PR 92.6/98.5 94.9/99.0 95.3/98.9
P-ROC/PR 97.4/56.8 97.6/57.0 97.8/57.6

VisA [60] I-ROC/PR 92.5/94.5 93.3/94.3 94.2/95.7
P-ROC/PR 98.7/43.3 98.8/44.1 98.8/46.1

Results on Different Res-
olutions. We conduct OneNIP
with varying input resolu-
tions considering different de-
fect area distributions on dif-
ferent datasets, and the re-
sults are reported in Tab. 3.
For pixel-level anomaly seg-
mentation, the performance
tends to consistently improve
when the input resolution in-
creases in a certain range (i.e., from 224×224 to 320×320). For image-level
anomaly classification, accuracy can be significantly boosted when increasing
input resolution on BTAD and VisA, while almost constant on MVTec. This is
not surprising as we know that anomaly regions are typically smaller on BTAD
and VisA compared to MVTec. The low resolution makes it challenging for pre-
trained models to capture anomaly characters, thus resulting in difficulties in
small anomaly detection.
Qualitative Comparisons. We present representative examples to qualita-
tively compare UniAD and our OneNIP for each object on MVTec, BTAD and
VisA in Fig. 3. It can be observed that both UniAD and OneNIP are able

https://github.com/zhiyuanyou/UniAD
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Table 4: Ablation studies on MVTec. Default settings are marked in blue.

(a) Prompt strategy in Reconstruction,
Restoration, and Refiner

No. Prompt Res.Ref. I-ROCP-ROCI-PRP-PR

0 ✗ ✗ ✗ 96.5 96.8 98.9 44.7
1 static ✗ ✗ 96.8 97.0 98.9 45.8
2 dynamic ✗ ✗ 97.5 97.1 99.2 46.0
3 ✗ ✓ ✗ 96.7 97.0 98.9 46.5
4 dynamic ✓ ✗ 97.4 97.3 99.1 48.4
5 dynamic ✓ ✓ 97.9 97.9 99.3 63.7

(b) Effects of the number of
Encoder, and Decoder

EncDecI-ROCP-ROCI-PRP-PR

1 1 94.8 97.0 97.9 56.0
2 2 96.7 97.4 98.9 59.4
4 4 97.9 97.9 99.3 63.7
6 6 98.1 98.0 99.4 64.6
2 4 97.0 97.6 99.0 61.2
4 2 97.1 97.6 99.0 62.1

(c) Effects of weight α

α I-ROCP-ROCI-PRP-PR

0.00 97.6 97.3 99.2 48.3
0.25 97.8 97.7 99.3 59.3
0.50 97.9 97.9 99.3 63.7
1.00 96.7 96.7 98.9 63.7

(d) Different prompt modes of the same category

Train Test I-ROC P-ROC I-PR P-PR

rand rand97.85±0.0197.86±0.0099.27±0.0163.71±0.01
fixed97.85±0.0297.86±0.0099.27±0.0163.71±0.02

fixed fixed97.91 97.86 99.30 63.66
rand96.05±0.2497.49±0.0398.34±0.1960.65±0.18

to recognize anomalies at image level, but OneNIP often does more precise
segmentation at pixel level.

4.3 Ablation Studies

To verify the effectiveness of all proposed components and the effects of hyper-
parameters, we implement extensive ablation studies on MVTec with a unified
setting as shown in Tab. 4.
Static or Dynamic Prompt in Reconstruction. We first simply replace the
learned query embedding with a normal image prompt feature in the LQD of
UniAD, which brings 1.1 points improvement in P-PR for anomaly segmentation
and also improves image-level anomaly classification in I-ROC and P-ROC (Lines
0 and 1 in Tab. 4a). Further, there is a significant improvement in both image-
level classification and pixel-level segmentation when we take the static prompt
as an initial value and dynamically update the prompt and target feature in
our bidirectional decoder (Lines 0 and 2 in Tab. 4a). This demonstrates that
the dynamic prompt manner takes an important role in unsupervised feature
reconstruction.
Effectivness of Restoration. To enhance the guidance of prompt in unsuper-
vised reconstruction, we introduce synthesized anomaly images and restore their
features to normal ones and thus form an unsupervised restoration stream. In
fact, this is what we expect at the inference stage. We can see that the restoration
stream is effective in improving pixel-level anomaly segmentation (from 46.0%
to 48.4% in P-PR, Lines 2 and 4 in Tab. 4a). For fair comparisons, we directly
introduce the restoration stream into UniAD without normal prompt, but the
corresponding improvement is less than ours (Lines 3 and 4 in Tab. 4a). This
further implies the importance of normal prompts in the restoration stream.
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Effectivness of Refiner. We improve anomaly localization by regressing re-
construction errors from low to high resolution with a supervised refiner. It
is simple and lightweight but greatly boosts pixel-level anomaly segmentation
(from 48.4% to 63.7% in P-PR, Lines 4 and 5 in Tab. 4a). This can be attributed
to two facts: reconstruction errors themselves can roughly localize anomalies, and
pseudo anomalies carry accurate pixel-level masks.
Effects of Hyper-parameter. We carefully study the effects of some hyper-
parameters, such as the number of encoder and decoder, coefficient α between
reconstruction and refiner, and prompt mode in training and testing as shown
in Tab. 4b, c, and d. It can be seen that more encoders and decoders are helpful
for better performance. Furthermore, it is important to choose a reasonable α,
which will be dependent on the refiner when the coefficient is too large, and on the
reconstruction when it’s too small. To demonstrate the robustness of our method
to different normal prompts of the same category, we compare different prompt
modes, i.e., random and fixed in training and testing, and report averaged testing
metric and standard deviation based on 10 random seeds in Tab. 4d. It can
be seen that our method is robust for different normal prompts of the same
category when training in a random mode. However, incorrect image prompts
will significantly decrease the performance. For example, if one MetaNut image
as the prompt for testing the Screw images, the corresponding I-ROC drops
from 91.4% to 67.3%, and P-PR drops from 39.8% to 2.3%. Furthermore, it
will weaken performance if training the model with a fixed image prompt while
testing in a random manner. This performance degradation mainly happens for
large positional changes, such as Srew on MVTec, and the performance of most
categories is maintained because the geometric appearance of MVTec for most
categories is roughly aligned.

5 Conclusion

In this paper, we propose a simple yet effective anomaly detection framework
that learns to detect anomalies with a normal image prompt. To adequately
leverage the prompt information in unsupervised feature reconstruction, we
first propose a bidirectional decoder to dynamically update the prompt and
target features and promote their interaction. To further enhance the guidance
of the prompt, we introduce pseudo-anomalous images and propose a restora-
tion stream that restores these pseudo-anomalous features to the corresponding
normal ones. Furthermore, we propose a lightweight refiner that regresses the
reconstruction errors for both real normal and pseudo-anomalous samples from
low to high resolution in a supervised manner, which greatly boosts anomaly
segmentation performance.
Limitation: In our OneIP, the proposed restoration stream introduces ad-
ditional training costs, although it can be completely removed at inference.
Furthermore, the bidirectional decoder and supervised refiner are only simply
designed, leaving ample room for improvement.
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A Implementation Details

For fair comparisons, we maintain the same hyper-parameters as in UniAD [52].
All input images are resized to 224×224 resolution for all methods both training
phase and inference time. The 4 staged features extracted from stages 1 to 4 of
EfficientNet-b4 are first resized to a spatial size of 14×14 and then concatenated
together to finally form a 272-channel feature map. For unsupervised reconstruc-
tion or restoration, the layer numbers of the encoder and decoder are set to 4 to
balance performance and computation costs. For supervised refiner, we employ
two transposed convolutional blocks, and the channels of each convolution block
are set to 128. For synthesized anomaly generation, we employ CutPaste [23]
and DRAEM [54] with a probability of 0.5. The loss weight λ is set to 0.5.

The model is trained with a total of 1000 epochs on 8 Tesla V100 GPUs
with batch size 64. AdamW optimizer with weight decay 1× 10−4 is used. The
learning rate is 1×10−4 initially and dropped by 0.1 after 800 epochs. We conduct
experiments based on the open-source framework PyTorch and NVIDIA V100
GPU. We use the official codes for DRAEM [54], SimpleNet [25] and UniAD [52],
and the publicly available Anomalib for other methods.

B Industry Anomaly Detection Benchmarks

Following previous works, we comprehensively evaluate our method on three
industry anomaly detection benchmarks, MVTec [4], BTAD [26], and VisA [60].
MVTec [4] is a highly popular dataset used for industrial anomaly detection.
It encompasses 15 categories (10 objects and 5 textures) from real-world manu-
facturing. The whole dataset is split into training and testing sets. The training
set includes 3,629 normal images, and the testing set contains 1,258 anomaly
images and 467 normal images. All anomaly images are annotated by pixel-level
mask, which is very convenient for pixel-level evaluation.
BTAD [26] is another real-world industrial anomaly detection dataset. It con-
tains a total of 2,830 images, showcasing 3 industrial products with body and
surface defects. The training set comprises 1,799 normal images while the testing
set consists of 290 anomaly images and 451 normal images. Similar to the MVTec,
pixel-wise annotations are given for anomaly images in the testing set.
VisA [60] is currently a larger and more challenging anomaly detection dataset.
This dataset contains 12 objects spanning 3 domains, complex structures, mul-
tiple instances, and multiple anomaly classes. There are 10,821 high-resolution
color images with 9,621 normal (8,659 for training and 962 for testing) and 1,200
anomaly images (all for testing) carrying both image- and pixel-level annotations.

C Complete Multi-class Anomaly Detection Results

In our main paper, we reported only the averaged results of all categories for each
dataset. Here, we provide a more comprehensive report in Tabs. 5 and 6, detailing
both image-level anomaly classification and pixel-level anomaly segmentation for
each category on MVTec, BTAD, and VisA.

https://github.com/openvinotoolkit/anomalib
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Table 5: Pixel-level anomaly segmentation comparisons with ROC/PR on
MVTec, BTAD and VisA. All methods are evaluated under the unified setting. The
best and second-best results are highlighted in red and blue, respectively.

Embedding-based Discriminator-based Reconstruction-based
Datasets Catergories CS-Flow [38] PaDiM [10] DFM [1] PatchCore [37] CFA [20] DRAEM [54] SimpleNet [25] UniAD [52] OneNIP

Bottle 97.5 / 61.7 97.7 / 64.2 97.1 / 58.2 97.3 / 72.1 94.4 / 49.1 96.1 / 75.9 79.8 / 21.0 98.0 / 68.0 98.5 / 81.6
Cable 84.5 / 15.7 95.9 / 36.6 97.4 / 51.8 98.2 / 56.0 90.8 / 22.6 52.4 / 5.7 82.8 / 24.4 97.5 / 53.1 98.2 / 67.5

Capsule 97.8 / 30.4 98.1 / 31.0 97.1 / 30.8 97.5 / 36.7 97.7 / 39.7 66.5 / 7.7 89.4 / 12.5 98.6 / 46.5 98.6 / 49.9
Hazelnut 96.0 / 32.2 98.1 / 48.0 98.1 / 44.4 98.5 / 49.6 97.7 / 48.5 97.5 / 73.9 88.5 / 20.3 98.1 / 53.6 98.7 / 70.2

Metal Nut 87.9 / 41.3 95.3 / 66.9 97.8 / 81.4 98.6 / 80.8 95.2 / 66.9 56.5 / 22.8 89.5 / 53.3 93.3 / 49.5 96.5 / 74.1
Pill 94.1 / 38.0 95.1 / 37.6 97.3 / 55.9 97.7 / 59.0 94.1 / 58.5 75.4 / 37.4 83.1 / 42.3 95.4 / 40.7 96.0 / 47.6

Screw 95.2 / 7.0 97.0 / 9.1 95.8 / 5.9 96.4 / 8.9 94.9 / 3.6 97.3 / 55.8 69.9 / 0.6 98.4 / 24.5 98.9 / 39.8
Toothbrush 97.6 / 38.6 98.1 / 39.6 98.2 / 51.4 98.2 / 47.3 97.5 / 49.4 97.6 / 68.9 92.1 / 31.8 98.4 / 39.7 98.8 / 53.4
Transistor 84.5 / 38.7 96.1 / 49.0 98.2 / 69.6 96.1 / 69.7 82.9 / 24.0 74.1 / 27.9 69.0 / 19.1 98.3 / 73.2 98.8 / 84.1

Zipper 96.1 / 37.4 92.9 / 21.6 95.2 / 24.5 95.4 / 56.9 85.8 / 19.5 96.3 / 63.5 88.4 / 25.5 96.6 / 33.2 97.6 / 59.1
Carpet 98.0 / 37.4 98.5 / 49.2 98.3 / 48.3 97.5 / 49.4 92.3 / 36.3 94.4 / 60.7 94.7 / 31.4 98.5 / 51.4 99.0 / 69.5
Grid 92.9 / 17.4 86.2 / 11.5 93.8 / 14.2 87.3 / 12.0 53.2 / 0.7 98.7 / 54.9 26.6 / 0.3 96.6 / 22.2 98.4 / 45.6

Leather 98.9 / 37.5 98.7 / 29.4 98.3 / 25.1 98.9 / 41.3 98.8 / 43.5 96.2 / 51.1 85.3 / 7.8 98.8 / 33.7 99.6 / 71.7
Tile 92.4 / 34.0 93.4 / 42.0 94.2 / 45.5 95.7 / 59.9 93.3 / 53.1 85.0 / 68.2 90.1 / 56.0 92.1 / 44.2 95.3 / 76.6

Wood 93.9 / 40.1 92.0 / 31.1 90.5 / 28.6 93.3 / 52.1 91.4 / 40.6 93.9 / 69.6 85.8 / 25.4 93.1 / 37.8 94.9 / 65.3

M
V

T
ec

[4
]

Mean 93.8 / 33.8 95.5 / 37.8 96.5 / 42.4 96.4 / 50.1 90.7 / 37.1 85.2 / 49.6 81.0 / 24.8 96.8 / 44.7 97.9 / 63.7

B
T
A

D
[2

6] 01 95.0 / 41.8 95.9 / 43.5 94.3 / 38.4 94.3 / 44.6 92.8 / 26.6 87.8 / 14.4 90.3 / 30.2 97.0 / 53.4 97.3 / 58.7
02 93.5 / 33.1 94.6 / 45.7 94.9 / 57.6 95.0 / 50.4 94.7 / 52.2 41.3 / 4.1 48.9 / 38.1 94.8 / 42.9 95.2 / 46.9
03 99.4 / 28.9 99.7 / 56.8 99.6 / 47.9 99.6 / 50.2 99.4 / 42.3 93.4 / 18.3 97.2 / 40.4 99.6 / 56.4 99.8 / 64.7

Mean 95.9 / 34.6 96.7 / 48.7 96.3 / 48.0 96.3 / 48.4 95.6 / 40.4 74.2 / 12.3 78.8 / 36.2 97.1 / 50.9 97.4 / 56.8

V
is

A
[6

0]

Candle 97.1 / 11.6 97.5 / 8.7 97.9 / 8.0 95.6 / 45.1 87.1 / 0.7 92.3 / 12.9 97.7 / 9.4 99.1 / 20.4 99.2 / 33.7
Capsules 86.0 / 7.0 89.6 / 3.4 93.5 / 13.8 98.0 / 13.0 80.6 / 1.0 67.4 / 16.3 94.6 / 44.9 97.9 / 47.4 98.4 / 55.6
Cashew 96.7 / 35.2 97.7 / 42.0 99.2 / 77.1 99.1 / 72.0 97.7 / 54.2 62.6 / 2.5 99.4 / 65.9 99.0 / 50.1 99.2 / 74.6

Chewinggum 99.0 / 37.1 96.3 / 25.1 97.5 / 28.6 98.1 / 23.4 96.1 / 14.6 94.2 / 49.7 97.0 / 19.5 99.1 / 57.5 99.1 / 61.1
Fryum 94.2 / 22.3 96.9 / 42.4 97.6 / 50.1 92.4 / 42.2 93.9 / 24.1 74.8 / 20.0 93.5 / 47.3 97.7 / 48.2 97.7 / 49.5

Macaroni1 95.3 / 2.5 97.1 / 0.9 94.4 / 0.8 97.9 / 5.1 89.0 / 0.2 80.7 / 12.9 95.4 / 1.5 99.1 / 7.6 99.2 / 21.3
Macaroni2 92.2 / 0.2 91.9 / 0.2 91.8 / 0.3 85.9 / 0.2 81.7 / 0.1 82.6 / 5.6 83.8 / 0.2 97.6 / 3.1 97.9 / 7.6

Pcb1 98.0 / 41.1 97.8 / 15.4 98.7 / 25.0 99.7 / 91.8 97.8 / 41.6 69.7 / 7.5 99.1 / 85.6 99.3 / 57.4 99.6 / 70.0
Pcb2 91.6 / 4.6 95.3 / 7.1 96.1 / 5.3 97.5 / 10.0 92.9 / 3.9 63.0 / 1.5 94.8 / 12.6 97.6 / 7.7 98.1 / 11.0
Pcb3 93.2 / 5.8 96.1 / 7.3 94.8 / 7.8 99.0 / 43.7 95.5 / 6.7 79.3 / 13.4 98.2 / 12.6 98.1 / 15.0 98.2 / 17.7
Pcb4 93.4 / 8.2 95.9 / 12.1 96.9 / 19.6 97.2 / 39.6 87.1 / 5.7 78.1 / 12.9 94.5 / 28.0 97.6 / 34.0 98.1 / 41.6

Pipe Fryum 98.1 / 47.5 98.7 / 40.0 99.3 / 65.8 99.1 / 71.8 97.7 / 48.7 92.3 / 26.6 95.3 / 69.6 99.2 / 55.1 99.5 / 76.5

Mean 95.6 / 18.6 95.9 / 17.1 96.5 / 25.2 96.8 / 38.2 91.4 / 16.8 78.1 / 15.1 95.3 / 33.1 98.4 / 33.6 98.7 / 43.3

Table 6: Image-level anomaly classification comparisons with ROC/PR on
MVTec, BTAD and VisA. All methods are evaluated under the unified setting. The
best and second-best results are highlighted in red and blue, respectively.

Embedding-based Discriminator-based Reconstruction-based
Datasets Catergories CS-Flow [38] PaDiM [10] DFM [1] PatchCore [37] CFA [20] DRAEM [54] SimpleNet [25] UniAD [52] OneNIP

Bottle 100 / 100 99.3 / 99.8 99.8 / 100 97.6 / 99.4 97.5 / 99.3 99.6 / 99.9 87.1 / 95.3 99.8 / 99.9 100 / 100
Cable 40.2 / 61.0 83.9 / 87.3 50.0 / 80.7 98.3 / 99.1 68.5 / 80.6 63.3 / 73.0 76.9 / 86.0 95.5 / 97.3 99.0 / 99.4

Capsule 84.2 / 96.5 77.4 / 91.0 90.1 / 97.4 82.6 / 96.1 78.7 / 94.6 80.9 / 95.1 70.6 / 92.3 88.1 / 97.1 91.1 / 97.8
Hazelnut 96.0 / 97.5 89.8 / 91.6 50.0 / 81.8 99.9 / 100 95.7 / 97.8 98.2 / 98.7 86.9 / 93.1 99.9 / 100 100 / 100

Metal Nut 95.8 / 99.1 96.2 / 99.2 50.0 / 90.4 92.8 / 98.3 80.6 / 95.1 90.5 / 97.8 84.1 / 95.9 98.9 / 99.7 99.8 / 100
Pill 40.6 / 82.4 80.6 / 95.4 70.4 / 94.7 64.5 / 92.4 68.8 / 93.4 81.0 / 96.2 63.4 / 91.3 94.0 / 98.9 96.9 / 99.5

Screw 65.3 / 81.7 81.9 / 90.9 72.2 / 91.3 55.9 / 76.3 47.1 / 73.1 96.3 / 98.7 52.7 / 76.6 88.8 / 95.6 91.4 / 96.6
Toothbrush 75.0 / 89.9 71.7 / 80.2 84.2 / 89.5 83.9 / 94.1 75.0 / 90.7 89.7 / 96.1 85.3 / 94.2 95.8 / 98.3 93.3 / 97.3
Transistor 63.2 / 60.2 88.9 / 85.1 50.0 / 70.0 99.3 / 99.1 79.5 / 75.9 83.0 / 78.0 73.0 / 72.6 99.8 / 99.6 99.8 / 99.7

Zipper 91.7 / 97.5 85.0 / 94.5 91.9 / 97.7 97.2 / 99.3 79.9 / 94.0 99.0 / 99.7 74.7 / 92.7 94.9 / 98.5 99.0 / 99.7
Carpet 93.6 / 98.2 98.6 / 99.6 86.9 / 95.9 88.1 / 96.1 83.2 / 95.0 97.6 / 99.2 88.1 / 96.7 99.8 / 99.9 99.9 / 100
Grid 77.2 / 90.5 61.4 / 78.0 85.9 / 94.3 89.9 / 96.2 56.2 / 77.4 99.5 / 99.8 45.1 / 68.1 97.1 / 99.1 99.0 / 99.7

Leather 100 / 100 100 / 100 64.1 / 90.0 98.2 / 99.4 99.9 / 100 96.0 / 98.7 95.8 / 98.6 100 / 100 100 / 100
Tile 98.0 / 99.2 99.7 / 99.9 50.0 / 85.9 98.5 / 99.5 98.4 / 99.5 98.7 / 99.5 91.9 / 97.3 99.3 / 99.8 100 / 100

Wood 99.5 / 99.8 98.3 / 99.4 50.0 / 88.0 99.9 / 100 97.5 / 99.1 97.6 / 99.2 98.2 / 99.4 98.5 / 99.6 98.8 / 99.6

M
V

T
ec

[4
]

Mean 81.4 / 90.2 87.5 / 92.8 69.7 / 89.8 89.8 / 96.3 80.4 / 91.0 91.4 / 95.3 78.2 / 90.0 96.5 / 98.9 97.9 / 99.3

B
T
A

D
[2

6] 01 95.1 / 98.0 99.8 / 99.9 98.7 / 99.5 98.2 / 99.2 96.0 / 98.6 93.1 / 97.5 96.4 / 98.3 92.2 / 97.9 98.8 / 99.6
02 81.0 / 96.7 87.9 / 98.1 50.0 / 93.5 70.2 / 95.8 70.8 / 95.0 61.4 / 90.9 75.2 / 96.2 78.8 / 96.4 79.0 / 96.5
03 99.4 / 94.3 99.4 / 94.2 57.5 / 55.4 99.3 / 94.0 95.6 / 69.6 99.5 / 96.7 99.3 / 90.6 99.8 / 98.0 100 / 99.5

Mean 91.8 / 96.3 95.7 / 97.4 68.8 / 82.8 89.2 / 96.4 87.5 / 87.7 84.7 / 95.0 90.3 / 95.0 92.2 / 97.9 92.6 / 98.5

V
is

A
[6

0]

Candle 91.0 / 92.9 81.7 / 76.3 50.0 / 75.0 66.4 / 80.3 54.9 / 54.9 88.0 / 88.5 92.3 / 93.4 96.6 / 97.0 96.8 / 97.1
Capsules 58.3 / 71.5 59.2 / 69.6 53.0 / 81.0 95.4 / 96.0 52.9 / 65.6 82.5 / 90.7 76.2 / 85.3 73.8 / 85.5 79.0 / 89.0
Cashew 91.8 / 95.7 83.0 / 91.2 53.0 / 84.3 96.0 / 98.0 82.2 / 89.6 65.4 / 81.0 94.1 / 97.0 93.6 / 96.8 93.7 / 96.7

Chewinggum 98.9 / 99.5 87.2 / 94.2 53.5 / 84.5 98.3 / 99.3 90.2 / 95.5 94.0 / 97.5 97.1 / 98.8 99.0 / 99.5 99.3 / 99.7
Fryum 88.0 / 94.7 84.8 / 89.2 51.5 / 83.8 94.0 / 97.3 65.9 / 82.1 86.3 / 93.8 88.0 / 94.1 88.4 / 94.5 86.9 / 93.8

Macaroni1 67.0 / 65.6 79.9 / 71.6 50.0 / 75.0 85.5 / 87.2 56.0 / 58.1 81.6 / 81.6 84.7 / 87.3 89.3 / 90.0 91.9 / 91.6
Macaroni2 26.4 / 38.1 56.4 / 52.7 50.5 / 62.9 66.5 / 61.7 41.4 / 43.0 68.5 / 73.0 75.0 / 77.0 82.1 / 82.3 84.1 / 86.5

Pcb1 91.2 / 90.1 77.0 / 72.6 50.0 / 75.0 94.5 / 94.7 88.9 / 86.6 69.6 / 71.2 93.4 / 94.4 94.3 / 93.6 95.8 / 94.8
Pcb2 70.8 / 73.4 75.9 / 74.8 52.5 / 76.3 95.3 / 96.4 62.5 / 66.5 85.1 / 85.1 90.0 / 91.7 91.9 / 93.0 94.1 / 94.6
Pcb3 54.0 / 61.8 69.5 / 63.3 53.0 / 76.4 95.3 / 95.5 72.4 / 73.6 84.9 / 85.8 91.3 / 93.4 85.2 / 86.2 91.9 / 92.6
Pcb4 89.6 / 87.5 89.7 / 87.5 50.0 / 74.9 99.4 / 99.3 82.5 / 81.5 92.4 / 92.5 99.1 / 99.2 99.3 / 99.2 99.5 / 99.5

Pipe Fryum 82.1 / 89.2 93.0 / 96.6 52.0 / 84.0 97.3 / 98.8 78.3 / 88.2 83.0 / 88.3 89.0 / 94.9 96.4 / 98.2 97.3 / 98.5

Mean 75.8 / 80.0 78.1 / 78.3 51.6 / 77.8 90.3 / 92.0 69.0 / 73.8 81.8 / 85.8 89.2 / 92.2 90.8 / 93.0 92.5 / 94.5
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