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Abstract. Anomaly detection is a practical and challenging task due to
the scarcity of anomaly samples in industrial inspection. Some existing
anomaly detection methods address this issue by synthesizing anomalies
with noise or external data. However, there is always a large semantic
gap between synthetic and real-world anomalies, resulting in weak perfor-
mance in anomaly detection. To solve the problem, we propose a few-shot
Anomaly-driven Generation (AnoGen) method, which guides the diffu-
sion model to generate realistic and diverse anomalies with only a few real
anomalies, thereby benefiting training anomaly detection models. Specif-
ically, our work is divided into three stages. In the first stage, we learn
the anomaly distribution based on a few given real anomalies and inject
the learned knowledge into an embedding. In the second stage, we use
the embedding and given bounding boxes to guide the diffusion model to
generate realistic and diverse anomalies on specific objects (or textures).
In the final stage, we propose a weakly-supervised anomaly detection
method to train a more powerful model with generated anomalies. Our
method builds upon DRAEM and DesTSeg as the foundation model and
conducts experiments on the commonly used industrial anomaly detec-
tion dataset, MVTec. The experiments demonstrate that our generated
anomalies effectively improve the model performance of both anomaly
classification and segmentation tasks simultaneously, e.g ., DRAEM and
DseTSeg achieved a 5.8% and 1.5% improvement in AU-PR metric on
segmentation task, respectively. The code and generated anomalous data
are available at https://github.com/gaobb/AnoGen.

1 Introduction

Anomaly detection has wide real-world application scenarios, e.g ., manufactur-
ing quality inspection and medical out-of-distribution detection. However, the
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Fig. 1: Comparisons of real anomalies (left column) and generated anomalies with
ours (middle column) and other methods (right column). Given a few images of a real
anomaly concept, our AnoGen is able to generate more realistic and diverse anoma-
lies through learning a pre-trained diffusion model compared to the existing synthetic
methods such as DRAEM and CutPaste. Meanwhile, our generated anomalies are spa-
tially controllable because of a given mask (e.g ., bounding box), which will benefit
downstream anomaly detection tasks, i.e., classification and segmentation.

extreme scarcity of anomaly data in the real world makes anomaly detection
tasks (including image-level classification and pixel-level segmentation) highly
challenging.

Faced with the fact of rare anomaly data, several works propose unsupervised
learning methods to eliminate the need for anomaly data. For example, [1, 11]
estimate the multivariate Gaussian distribution of normal images, [34] creates
a large memory bank to store the features of normal images, and [12, 39, 48]
train a reconstruction network to compare the difference between reconstructed
output and original image or feature extracted from a pre-trained model. While
these methods have achieved satisfactory performance in anomaly classification
tasks, unfortunately, due to the lack of discriminative guidance from anomaly
data, they still perform poorly in anomaly segmentation tasks.

To perform anomaly segmentation models better, some recent works, such
as DRAEM [47], CutPaste [20], and SimpleNet [24], propose to artificially syn-
thesize anomalies to train discriminative models. Specifically, DRAEM mixes an
external texture dataset and normal images to synthesize anomalies, CutPaste
crops an image’s region and randomly pastes it to another region, and Simplenet
adds noise to the feature map to simulate anomalies. These synthesized anoma-
lies have indeed proven beneficial for discriminative models, leading to superior
performance in anomaly segmentation tasks. However, the drawback is that the
synthesized anomalies are based on additional datasets or noise, which results in
a significant semantic gap compared to real anomalies. This raises the question:
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is it possible to create realistic and diverse anomaly images that are semantically
consistent with real-world anomaly concepts, thereby further enhancing these dis-
criminative models?

Fortunately, generative models have indeed achieved remarkable progress in
creating realistic and diverse images. GANs [29] are trained to generate images by
pitting a generative network against a discriminative network in an adversarial
fashion. Although GANs are efficient in generating images with good percep-
tual quality, they are difficult to optimize and capture the full data distribution.
Recently, Diffusion Models (DM) [45] have further surpassed GANs in image
generation, which learn the distribution of images through a process of addnois-
ing and denoising. However, these powerful generative model still requires a large
number of training images, which raises the question: how to generate realistic
and diverse anomaly images with the DM only a few real anomaly images are
available?

To solve the above problems, we propose a few-shot anomaly-driven gen-
eration method, which aims to generate realistic and diverse anomalies under
the guidance of only a few real-world anomalies. Borrowing concepts in few-shot
learning [43], we call these real-world anomalies “support anomalies”. Considering
that the number of support anomalies is very limited (1 or 3), it is not possible
to optimize millions of parameters in the DM. Instead, we use a pre-trained dif-
fusion model and then freeze its all parameters and only optimize an embedding
vector that contains only a few hundred parameters. After training, this em-
bedding vector is able to represent the distribution of given support anomalies,
which guides the diffusion model to generate realistic and diverse anomalies as
shown in Figure 1.

In the generation process, we provide a mask (a bounding box) condition
to control the position and size of the anomaly region. This mask also serves
as a ground truth for downstream anomaly detection tasks, i.e., discrimina-
tive anomaly segmentation. Previous work [14] attempted to generate anoma-
lies with GANs, while failing on downstream tasks due to the absence of la-
bels. Specifically, we employ the generated images to two discriminative models:
DRAEM [47] and DeSTSeg [49]. Instead of using accurate masks in DRAEM
and DeSTSeg, we have to take bounding box masks as supervision for training
DRAEM and DeSTSeg. To this end, we propose a weakly-supervised learning [50]
version built on DRAEM and DeSTSeg, where high-confidence normal predic-
tions within the box region will be filtered out to alleviate their interference for
model training.

It is worth noting that a concurrent study, AnomalyDiffusion [17], shares
similar concepts to ours. It also generates more anomalies with a small number
of real anomalies, but their implementations are different. First, AnomalyDiffu-
sion is more complex, it trains a mask generation network, which significantly
increases computational costs. In contrast, we only learn a 768-parameter em-
bedding. Then, AnomalyDiffusion utilizes prior knowledge of anomaly masks to
constrain its generated shape. This potentially limits the diversity of generated
anomalies. While we do not impose such constraints and thus retain the diver-
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sity of generated anomaly. Finally, to alleviate the problem of inaccurate masks,
AnomalyDiffusion uses adaptive attention re-weighting to fill the mask region.
However, it still cannot completely solve it. We propose a weak supervision
method, which is more effective in addressing this issue, making our approach
more robust and generalizable.

We conduct experiments on the commonly used industrial anomaly detection
dataset, MVTec [6]. With the help of our generated images equipped with the
proposed weakly supervised anomaly detection method, we successfully improved
the anomaly detection performance of both DRAEM (from 67.4% to 76.6% in
P-AUPR) and DeSTSeg (from 73.2% to 78.1% in P-AUPR) models. In a word,
our contributions can be summarized as:
• We propose a few-shot anomaly-driven generation method guiding a diffu-

sion model to generate realistic and diverse anomalies with a few real-world
anomalies. These generated anomalies are consistent with real-world anoma-
lies in semantics.

• We propose a bounding-box-guided anomaly generation process, which not
only allows for control over the position and size of the anomaly regions but
also provides bounding box supervision for discriminative anomaly detection
models.

• Based on bounding box supervision, we propose a simple weakly-supervised
anomaly detection method built on two discriminative anomaly models, DRAEM
and DeSTSeg. The experiments on MVTec show that we successfully improve
their performance both on anomaly classification and segmentation tasks.

2 Related Work

Conditional Diffusion Models. The diffusion model [16] has achieved re-
markable success in image generation, leading to a surge of research interest in
generating images that meet specific user expectations under given conditions.
For instance, [13] focuses on generating images corresponding to class labels.
Other methods such as [23,28,38] allow users to provide text and generate im-
ages that align with the provided text. [8,41] utilize reference images to generate
images with similar style and structure. [7, 21] refer to the given layout condi-
tions, which ensure that the elements in the image have the expected relative
positional structure. Additionally, [5,26] enables users to generate corresponding
images based on the user’s sketches. However, these methods are mainly applied
to natural images and generate semantically correct images without being able
to generate specific objects.

There is a huge gap between industrial anomalies and natural images. In this
paper, we aim to generate special anomalies based on a given anomaly concept.
In [37,40], they can generate a specific concept with given reference images, but
they focus on generating the entire object. However, the industrial anomalies are
often only a small part of the object. In addition, to control the specific area of
the generated anomalies, we use the inpainting mode, which has been explored
in [3, 25].
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Furthermore, the use of diffusion models to generate images has proven to
be beneficial for various downstream image recognition tasks. For example, [42]
employs generated images as data augmentation, [4] generates images to enhance
training ImageNet classification model, and [2] generates skin images for disease
classification task. As far as we know, we are the first to utilize diffusion models
to generate images and assist in anomaly detection.
Industrial Anomaly Detection. Unsupervised anomaly detection models are
generally based on embedding or reconstruction to learn normal distribution. In
embedding-based methods, [1,11] use a pre-trained network to extract features
from images and estimate their multivariate Gaussian distribution. [36] fits the
normalizing flow into a distribution in the form of a product of Gaussian and
Dirac distributions. [34] maintains a huge memory bank to save the extracted
features. [19, 31] propose feature adaptation for adapting targeted datasets.
Reconstruction-based methods [32, 48] encourage a model to learn the masked
areas. [27] proposes a robust GAN-inversion to store any images. [46] uses
a layer-wised query transformer to reconstruct original features preventing a
shortcut issue.

Discriminator-based models often achieve superior performance in anomaly
segmentation tasks and they require synthetic anomaly images to train the dis-
criminator. [47] utilizes an external texture dataset to construct anomalies,
while [20] randomly crops image patches and pastes them onto other parts to
create anomalous images. [24] directly perturbs the feature map to simulate the
features of anomalous images. However, these synthetic anomalous images have
a significant distribution gap with real-world anomalous ones, which is not con-
ducive to training anomaly detection models in practical applications. We expect
the generated images to be as similar as possible to real anomalies, making the
model more robust.

3 Preliminaries

Image Generation with Diffusion Models. The diffusion model (DM) is a
probabilistic model for learning data distribution, which can reconstruct diverse
samples from noise. The DM regards the process of addnosing and denosing as a
Markov chain of length T , and learns the data distribution through a continuous
process of addnosing and denoising. The optimization objective of DM is to
predict noise from the noisy image, which can be expressed as:

LDM = Ex,ϵ∼N (0,1),t[||ϵ− ϵθ(xt, t)||22], (1)

where t uniformly sampled from [1, · · · , T ], ϵ is the noise sampled by a Gaussian
distribution, xt is the noisy version during the addnoising process, and ϵθ(xt, t)
is the noise predicted by the network during the denoising process.
Conditional Diffusion Models. Given a random noise, DM can generate di-
verse images through iterative denoising. However, the semantics of the gener-
ated image are uncontrollable. To solve the problem, the Latent Diffusion Model
(LDM) proposes to use a condition y to control the denoising process. LDM first
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transforms the images into a latent space, then injects the condition y into the
model through a cross-attention module, allowing the model to generate images
corresponding to y. The optimization objective of LDM can be simplified as:

LLDM = Eε(x),ϵ,t,y[||ϵ− ϵθ(ε(x), t, τθ(y))||22], (2)

ε(·) is a auto-encoder and is used to transform x into the latent space. The
condition y could be a text, a class label, etc., and τθ(·) is the corresponding
encoder.

Intuitively, one might think that training an expert model τθ(·) to encode the
industrial prompt, such as “scratch”, would be sufficient for generating anomaly
images. However, this approach becomes impractical due to the scarcity of
anomaly images. Similarly, fine-tuning the LDM is not feasible for the same
reason. To overcome these challenges and reduce the reliance on anomaly im-
ages, we propose a scheme that directly utilizes embeddings as conditions. By
doing so, we only need to learn an embedding with a small number of parameters,
typically a few hundred. This approach allows us to generate anomaly images
effectively while mitigating the limitations imposed by the scarcity of anomaly
data.
Discriminative Anomaly Detection Model. A discriminative model typ-
ically consists of two modules: reconstruction and discrimination. The recon-
struction module is responsible for reconstructing anomalous (normal) images
into normal (itself) ones, and then the discrimination module predicts the seg-
mentation map of the anomalous regions based on the difference between the
reconstructed output and the original input. To formalize the process, let’s use
DRAEM as an example to explain. Assuming In denotes a normal image, and
the corresponding synthetic anomalous image is Ia. We denote the reconstructed
output of Ia or In as Ir, then the optimization objective for reconstructive sub-
network is

Lrec = λLSSIM (I, Ir) + l2(I, Ir), (3)

where λ is a weight balancing between SSIM [44] loss and l2 loss. Then, a nor-
mal image In (or its synthetic version Ia) and the corresponding reconstruction
version Ir are considered as the input of the discriminative sub-network, and the
optimization objective of the discriminative sub-network is

Lseg = LFocal(M,M̂), (4)

where M̂ is the predicted segmentation map, M is the ground truth mask of In
(or Ir) and LFocal is the Focal Loss [22].

It can be seen that both reconstruction and discrimination modules require
anomalous images Ia. In DRAEM and DeSTSeg, they create anomalies by blend-
ing normal images with an external dataset, DTD [9], while CutPaste creates
anomalies by randomly pasting image patches. As mentioned earlier, these syn-
thetic anomaly images are semantically inconsistent with real-world images.
Therefore, our goal is to generate semantically consistent images to further en-
hance discriminator-based models.
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Fig. 2: Pipeline of our work, and it consists of three stages. In the first stage, we learn
an embedding vector v with few support anomalies (ITa , MT

a ) based on a pre-trained
Latent Diffusion Model (LDM) fixing all parameters, where the number of real-world
anomalous images ITa is only 1 or 3, and MT

a is the corresponding ground-truth masks.
In the second stage, given a normal image In and a bounding box mask Mbox, we use the
learned embedding v∗ to guide the LDM to generate anomalous image IGa . In the third
stage, we use the normal image In, bounding box mask Mbox, and generated image
IGa to train a weakly-supervised anomaly detection model for image-level classification
and pixel-level segmentation.

4 Methodology

Our method consists of three stages, as shown in Figure 2. The first stage learns
embeddings based on a few support anomalies and their ground-truth segmen-
tation maps. In the second stage, anomalies are generated by leveraging the
learned embeddings, given objects (or textures) and bounding boxes as guid-
ance. In the third stage, a weakly supervised anomaly detection model is trained
using anomalies and bounding box supervision.

4.1 Stage-1: Learn Anomaly Embedding

When dealing with a limited number of anomalous images, it becomes imprac-
tical to optimize a diffusion model with millions of parameters. However, the
optimization process becomes much easier when working with an embedding
that consists of only a few hundred parameters. Hence, our choice is to focus on
learning an embedding that effectively captures the semantic characteristics of
real anomalies, rather than relying on fine-tuning a complex model.

Given that predicting noise in LDM involves learning the data distribution,
we can leverage the loss associated with noise prediction to gain insights into
the distribution of real anomalies. Specifically, we first initialize an embedding
v to replace the condition embedding τθ(y) in LDM, and then optimize it with
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Equ 2. It can be denoted as follows:

v∗ = argmin
v

LLDM (ITa , t,v), (5)

where ITa is a few (e.g ., 1 or 3) real-world anomalous images. Similar to the
conditioning mechanism in LDM, we insert embedding v into intermediate layers
of the UNet in LDM implementing with cross-attention. Instead of learning the
entire network, we initiate the embedding and freeze the parameters of a pre-
trained LDM model. This allows us to solely update the embedding during the
addnoising and denoising process. By doing so, the learned embedding captures
distribution about the provided real-world anomalies, which subsequently guides
the image generation in the subsequent stage.

In certain cases, the anomaly region within an image is typically a small frac-
tion of the overall object (e.g ., “a hole in a carpet”). Training the model on the
entire image may result in a learned data distribution that is biased towards the
object itself (e.g ., “carpet”) rather than focusing on the anomaly (e.g ., “hole”).
To address this concern, we incorporate the segmentation mask of the abnormal
image to guide the loss function. We denote MT

a as the segmentation mask of
ITa , then the modified LDM loss can be described as

L
′

LDM = Eε(x),ϵ,t,v[||(ϵ− ϵθ(ε(I
T
a ), t,v))⊙MT

a ||22], (6)

There are some similar works [15,18] to this approach, where they also learn
the specified object by optimizing an embedding. However, these works focus on
learning the entire object, whereas our approach emphasizes capturing the local
details of the object through a mask-guided loss. We demonstrate the impact of
these two approaches on anomaly generation in the following experiments.

4.2 Stage-2: Guiding Anomaly Generation

Our generation objective is to ensure that the generated images exhibit both
semantic and spatial controllability. On the semantic level, we aim to generate
images that are consistent with real-world examples, maintaining consistency
in terms of objects or textures (e.g . “bottle") and the type of anomaly (e.g .
“broken"). On the spatial level, we strive to control the position and size of the
anomaly region by providing bounding boxes. By achieving both semantic and
spatial controllability, we can generate images that closely align with our desired
specifications.

To achieve the above goals, we adopt an inpainting technique inspired by [3].
Specifically, we randomly sample a normal image In from the training set as the
input image and employ a bounding box mask M box to regulate the location and
size of the generated anomaly. The embedding v∗ will be frozen and injected into
the image as a condition through the cross-attention module, thus generating the
expected anomaly. For the inference image at each step in the denoising process,
the area within the box will be retained, and the area outside the box will be
replaced by the noisy version of In. By doing so, we can control the generated
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anomalies to be located in specified areas of the input image while leaving other
areas untouched. We can represent this process as:

zt = ztn ⊙ (1−M box) + z
′

t ⊙M box, (7)

where ztn is the addnosing version of ϵ(In) at t step, and z
′

t is the denoising version
of zt+1. ϵ(·) transforms In into the latent space. After the denoising process, the
latent variable z0 is passed through a decoder to produce anomalous image IGa .
Since the diffusion model generates images from random noise, they inherently
possess a certain degree of diversity. However, to augment this diversity further,
we introduce ground boxes with arbitrary positions and sizes.

4.3 Stage-3: Weakly-Supervised Anomaly Detection

Existing discriminative models are typically trained on precise masks. However,
it is not suitable for our bounding box supervision since not all pixels within the
box are necessarily anomalous. If we directly use the entire box as supervision
for the anomaly region, it would mistakenly classify normal pixels as anomalous
ones and thus damage the model performance in the anomaly segmentation task.
To accommodate the bounding box supervision, we design a weakly supervised
loss for anomaly detection.

Let p̂(i,j) represent the predicted normal probability at the location (i, j). We
use a threshold τ to distinguish confident predictions:

δ(i,j) =

{
1, if p̂(i,j) ≥ τ

0, otherwise
, (8)

where p̂(i,j) = 1−M̂(i,j). For high-confidence normal pixels within the box region,
we set their loss to 0, thereby reducing the confliction of possible normal pixels
within the bounding box. For all pixels out of the bounding box, we use the
same segmentation loss Lseg as Eq. 4. Therefore, the overall weakly-supervised
loss of discriminative sub-network is

L
′

seg = M box ⊙ (1− δ)⊙ Lseg + (1−M box)⊙ Lseg, (9)

where M box is the given box mask in anomaly generation.

5 Experiment

5.1 Implementation Details

Datasets. MVTec [6] is a widely used industrial anomaly detection dataset that
contains 10 objects and 5 textures, each with 1-8 types of anomaly and a few
anomalous images, totaling 73 types of anomalies and 1258 anomalous images.
For each type of anomaly, we generate 4 anomalous images for each object (or
texture) in the training set, obtaining an anomaly dataset of 70,760 images.
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Fig. 3: We show six sets of images, in each set, the first column is the support anomalies
(only 3 images), and the second column is the object (or texture) sampled from the
training set with a randomly generated bounding box mask, the third and fourth
columns are the generated anomalous images.

Learning embeddings and generated images. We use the pre-trained LDM
[33] without any parameter fine-tuning. The model uses the text encoder in the
CLIP [30] to obtain text embeddings, thus we use the word “defect” through
the text encoder to obtain the initialized embedding v (dimension is 768). In
the stage of learning v, we randomly select 3 anomalous images from the real
anomalies to be the support anomalies. We train 6000 iterations with a learning
rate of 0.005. During the stage of generating anomalous images, we randomly
create 2 masks for each object (or texture) and generate 2 anomalous images
using each mask.
Bounding-Box Generation. In order to enhance the rationality of the gener-
ated anomalies, we impose certain constraints on the bounding box. Specifically,
we control position to ensure at least 50% IoU between the bounding box and the
foreground region obtained with GrabCut [35]. Then, we set hyper-parameters
to control the size, e.g ., the hyper-parameters of hazelnut-hole are [0.1, 0.5], in-
dicating that the bounding box is between 10% and 50% of the image width or
height. Based on these above constraints, we randomly generate bounding boxes
to enhance the diversity of generated anomalies.
Anomaly detection task. We use DRAEM and DeSTSeg as baseline models.
Apart from the hyper-parameter τ = 0.9, we keep the other hyper-parameters
consistent with the original paper to ensure fair comparisons. When sampling
a training batch, we randomly sample the original synthetic anomalies and our
generated anomalies with a probability of 0.5. For evaluating the performance, we
compared the AU-PR and AU-ROC metrics for both anomaly classification and
anomaly segmentation tasks. It is worth noting that due to the severe imbalance
between normal and anomalous pixels, the AU-PR metric on the segmentation
task may better measure the performance of the model [10]. We focus on com-
paring with the DRAEM and DeSTSeg to validate that our generated anomalous
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Table 1: Anomaly classification comparisons (image-level AU-ROC / AU-PR) and
anomaly segmentation comparisons (pixel-level AU-ROC / AU-PR) on MVTec. The
results of DRAEM and DeSTSeg are reported by running their official code. To ensure
a fair comparison, we ran DRAEM, DeSTSeg and our AnoGen under the same envi-
ronment, while keeping the hyper-parameters consistent with the original paper.

Metrics CS-FLow PaDim PatchCore RD4AD DRAEM AnoGen DeSTSeg AnoGen

AU-ROC 97.5 91.2 97.8 98.7 97.1 98.7 (1.6 ↑) 98.3 98.8 (0.5 ↑)
Image

AU-PR 97.7 94.2 98.8 97.8 98.5 99.5 (1.0 ↑) 99.4 99.6 (0.2 ↑)

AU-ROC 93.4 96.9 97.5 93.9 96.8 98.1 (1.3 ↑) 98.2 98.8 (0.6 ↑)
Pixel

AU-PR 59.6 48.5 61.7 55.4 67.4 73.2 (5.8 ↑) 76.6 78.1 (1.5 ↑)

images can benefit the model train better. In addition, we also compared with
other unsupervised anomaly detection models: PaDim [11], PatchCore [34], CS-
Flow [36] and RD4AD [12].

5.2 Qualitative Analysis for Anomaly Generation

In Figure 3, we present a selection of generated anomalies (Additional generated
images are shown in the supplementary materials). Our generated anomalies
effectively meet our expectations, despite the presence of only 3 real anomalies in
the support set. They exhibit similarity to real-world anomalies and demonstrate
diversity. Moreover, by applying box conditions, we gain control over the position
and size of the anomaly region, enabling spatial controllability.

5.3 Quantitive Comparisons on Anomaly Detection

We evaluate the effectiveness of our generated images by assessing the model’s
performance on anomaly detection tasks. We focus on whether our generated
images can directly improve the model’s performance. As shown in Table 1,
both DRAEM and DeSTSeg consistently exhibit improvements across all met-
rics. For example, we observe a 1.6% enhancement in image-level AU-ROC for
DRAEM and a 0.5% improvement for DeSTSeg. Similarly, in terms of pixel-level
AU-PR, DRAEM and DeSTSeg show improvements of 5.8% and 1.5% respec-
tively. This demonstrates that incorporating real-world anomaly distribution
guidance can be beneficial for the model, especially in the anomaly segmenta-
tion task. Then, when compared to unsupervised learning models, it becomes
evident that discriminator-based models outperform in anomaly segmentation
tasks. This finding reveals the guidance of anomalies is of great significance for
anomaly segmentation tasks. These conclusions strongly support the crucial im-
portance of providing anomalies that are consistent with real-world anomalies for
the performance of anomaly segmentation models, which aligns perfectly with
the purpose of our work.
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(a) (b) (c)

Fig. 4: The ablation study (visualization of the generated images). (a) Comparison
of different support anomalies, the number of images is fixed to 3. (b) Comparison of
different numbers of support anomalies. (c) Comparison between mask guide loss and
non-mask guide loss during embedding learning.

Table 2: The ablation study (model performance on anomaly detection task).

(a) Effects of different support
anomalies.

support set 1-st set 2-nd set

Image AU-ROC 98.7 98.5
AU-PR 99.5 99.1

Pixel AU-ROC 98.1 97.7
AU-PR 73.2 71.4

(b) Effects of the number of
support anomalies.

k-shot 1 3 5

Image AU-ROC 97.7 98.7 98.6
AU-PR 98.9 99.5 99.5

Pixel AU-ROC 97.6 98.1 98.2
AU-PR 70.5. 73.2 73.0

(c) Effects of mask-guided
learning loss.

leaning embedding mask non-mask

Image AU-ROC 98.7 97.8
AU-PR 99.5 98.7

Pixel AU-ROC 98.1 97.6
AU-PR 73.2 70.4

6 Ablation Study

6.1 Anomalous Images Generation

Effects of different support anomalies. We analyze the impact of different
support anomalies, and the results are presented in Figure 4a and Table 2a.
In Figure 4 (a), both sets of abnormal images are associated with the object of
“crack hazelnut”. However, the instances in the support set are inconsistent, with
one set (the second row) revealing the white kernel, causing the generated images
to also tend to reveal the white kernel. Despite this inconsistency in instances,
the semantics (“crack hazelnut”) remain consistent and correct. As a result, the
impact on model performance is minimal, as shown in Table 2a. This indicates
that different support sets can affect the generated instances, but the semantics
remain aligned with the intended expectations.
Effects of the number of support anomalies. We also analyzed to assess
the impact of different numbers of support anomalies. As depicted in Figure 4b,
when only one image is available, the learned distribution tends to be biased
towards the specific features of that image. Consequently, the generated im-
ages lack diversity and generalization. This is reflected in Table 2b, where the
performance on anomaly detection tasks slightly decreases. When using more
images (5 images) to learn the embeddings, the diversity and generalization of
the generated images significantly improve, as confirmed by the specific metrics
in Table 2b for anomaly detection tasks. Considering that the performance using
3 support anomalies is comparable to using 5 support anomalies (0.1% difference
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Table 3: Ablation study of τ .
τ 1.0 0.95 0.90 0.80

Image AU-ROC 98.5 98.5 98.7 98.2
AU-PR 99.5 99.4 99.5 99.2

Pixel AU-ROC 98.0 98.2 98.1 97.1
AU-PR 68.9 71.1 73.2 65.4

Table 4: Ablation study of anomalies.
Anomalies CutPaste DRAEM Ours AU-PR

DRAEMCutPaste ✓ 59.8
DRAEMOriginal ✓ 67.4
DRAEMOurs ✓ 68.3
DRAEMCutPaste+Ours ✓ ✓ 69.0
DRAEMDRAEM+Ours ✓ ✓ 73.2

on image AU-ROC and 0.2% difference on pixel AU-PR), we have opted for 3
images to reduce the demand for anomaly data.
Mask-Guided embedding learning. We emphasize the importance of incor-
porating the ground truth of support anomalies when learning embeddings. This
is to ensure that the learning target is biased towards the anomaly region rather
than the object (or texture). As shown in Figure 4c, without the guidance of
the mask, the distribution represented by the embeddings is biased towards the
entire object (“bottle”), failing to generate anomaly (“broken”). At the same time,
the performance of anomaly detection tasks is also severely affected.

6.2 Anomaly Detection with Generated Anomalies

Confidence threshold τ . In the weakly supervised anomaly detection model,
we use a threshold τ to filter out interference from high-confidence normal pixels
within the bounding box. As shown in Table 3, τ has a significant impact on seg-
mentation tasks. For example, when the τ = 0.9, the pixel-level AU-PR reaches
73.2%, whereas when τ = 1.0 and τ = 0.8, the performance decreases to 68.9%
and 65.4%, respectively. This is because if the threshold is too low, the model
will be forced to classify more normal pixels within the box region as anomaly
pixels. Conversely, if the threshold is too high, the model will ignore learning
anomalous pixels. Based on our experimentation, we tend to prefer setting the
threshold to 0.9 or 0.95, as it strikes a balance between capturing anomalous
pixels and avoiding misclassification of normal pixels within the bounding box.
Training with different anomalies. We also investigate the impact of the
training model with different anomalies. As shown in Table 4, both DRAEM-
based synthetic anomalies and our generated anomalies can achieve good per-
formance on pixel AU-PR. The performance of the model trained solely on
DRAEM-based anomalies or our anomalies is comparable (67.4% and 68.3%,
respectively). Furthermore, when these anomalies are used together, a signifi-
cant improvement can be observed, reaching 73.2% This can be attributed to
the fact that support anomalies may not fully represent the distribution of the
test set, resulting in weaker predictive capabilities for unseen images. On the
other hand, DRAEM-based anomalies, which incorporate a large amount of out-
of-distribution data, can enhance the model’s ability to predict unseen images.
Therefore, training the model jointly on both DRAEM-based anomalies and our
anomalies proves to be a better choice.
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Fig. 5: Ablation study of N .

The number of generated anomaly
images. In our study, we generate N = 4
for each object (or texture), and Figure 5
illustrates the impact on the model with
different values of N . As N increases, the
model benefits from having more anoma-
lies. When N < 3, it is evident that in-
creasing the number of anomalies is ben-
eficial for the model. However, it is im-
portant to consider that generating more
anomalies requires additional time and re-
sources. Taking into account the trade-off
between model performance and the cost of image generation, we ultimately
chose N = 4 as the optimal value.

7 Conclusion

In this work, we have identified and addressed two key challenges in anomaly
detection. The first challenge is the scarcity of available real-world abnormal
images, which makes it difficult to train anomaly detection models effectively.
The second challenge is that synthetic anomalies used in previous methods are
unrealistic and have a significant semantic gap compared to real-world anomalies.
To address these challenges, we propose an anomaly-driven generation method
(AnoGen) to generate a large number of real and diverse abnormal images.
Since real abnormal images are scarce, our generation process is driven by few-
shot learning, requiring only three real abnormal images. By applying these
generated images to DRAEM and DeSTSeg, we achieved promising results on
the widely used MVTec anomaly detection dataset. In particular, our generated
images have significantly improved the performance on anomaly segmentation
task, as evidenced by the AU-PR metrics. This demonstrates the effectiveness
of our approach in addressing the above challenges in anomaly detection and
highlights the potential of our method for enhancing anomaly detection in real-
world scenarios. Overall, our approach uses a small number of real anomaly
images to significantly improve model performance, and since a small number
of real anomaly images are present in many real-world scenarios, this is of great
significance for many practical applications of industrial anomaly detection.
Limitation. The generated anomaly images enjoy free annotations but in bound-
ing boxes form. Therefore, pixel-level model training needs the efforts of weakly
supervised methods, which inevitably introduces additional hyperparameters. In
our future work, we will explore how to obtain more precise annotations when
generating anomaly images so that they can be more easily and widely used in
anomaly detection.
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